Subject	(English)	ntroductory Qua	ntum Mechanio	CS .	Semester Fall			Fri. / 3 rd 13:00-14:30		
科目名(日本語)	量子力学					Day/Slot			
Course (Code	VJ253F73	Course Num	bering	TEI-QTN	E301	Period	Oct. 4, 2019 – J	an. 31, 2020	
la star st							Campus	Aobayama	obayama	
(Post)	Simon J. Greaves (Assoc. Prof.)					Building	Electrical, Info	rmation and		
Faculty		School of Engine	ering		Credits	2	Class Room	Lecture Room	2B	
Class s	ubject	Introductory Qu	uantum Mecha	inics						
Object	and summ	ary of class								
Beginn	ing with a r	, eview of some e	arly 20th centu	ury expe	riments, t	his cours	e aims to dev	elop an underst	anding of	
the bas	sic concepts	of quantum me	, chanics and ho	bw they	differ fror	n classica	al mechanics.	•	C	
Keywo	rds	quantum mecha	nics							
Goal of	f study	•								
Use the	e Schröding	er equation to so	olve one-dime	nsional	problems	and show	v that quantu	m mechanics ca	n be used to	
predict	t the exister	ce of physical ph	enomena such	as quar	ntum mec	nanical ti	unneling, disci	rete energy level	s and energy	
band-g	aps in solid	s.								
Conter	nts and prog	ress schedule of	class							
1. Intro	duction: W	nat is quantum m	echanics and h	ow does	it differ fr	om classi	cal mechanics	? Double slit expe	eriments are	
used to illustrate the differences.										
2. Blac	kbody radia	tion and the phot	toelectric effect	t: How ca	an we exp	ain the d	istribution of l	ight emitted by b	lack bodies,	
such as	the sun?									
3. Compton scattering, Franck and Hertz experiment: When a photon interacts with an electron we can treat the problem										
using relativistic mechanics. Electron energy levels in gases can be determined using the Franck and Hertz experiment.										
4. Bohr	r's model of	the hydrogen ato	om, de Broglie t	theory: A	A simple m	odel is u	sed to calculate	e the energy leve	is of the	
electron in a nydrogen atom. The de Broglie theory states that all matter has a wavelength. The Davisson-Germer										
experin E Schr	nent is used ödinger og i	to demonstrate t	inger equation	e Brogile	es theory. Iucod in it	time de	andont and ti	maindanandant	forms with	
5. Scille	nctions as s	alutions	inger equation	is introu		time de		me muepenuem		
6. Oper	rators and e	igenvalue equatio	ons [.] The Schröc	linger er	nuation is a	an eigenv	alue equation	for energy Using	appropriate	
operato	ors we can c	erive similar eige	nvalue equation	ns for mo	omentum	and othe	r physical obse	ervables.	app. op. acc	
7. The i	infinite pote	ntial well: A simp	ole one-dimensi	ional pro	blem of a	particle t	rapped in an i	nfinitely deep we	ell is solved	
using th	he Schrödin	, ger equation.				•		, ,		
8. Paul	i exclusion p	rinciple, particle	in a box, Heise	nberg u	ncertainty	principle	: The Pauli exc	lusion principle r	requires that	
all part	icles have d	fferent wavefunc	tions. The Heise	enberg u	ncertainty	principle	e tells us that t	he more accurate	ely we try to	
measur	re the positi	on of an object, tl	ne less we knov	v about i	its momen	tum, and	vice-versa.			
9. Delta	a-function p	otential, scatteri	ng and tunnelir	ıg : Quan	itum mech	anical tu	nneling is used	l in many devices	but cannot	
be expl	ained by cla	ssical mechanics.	Using a delta-f	unction	potential t	he Schrö	dinger equatio	n is solved to sho	ow that	
quantu	m mechanio	s can predict this	effect. Some a	pplicatio	ns of quar	tum med	hanical tunne	ling are reviewed		
10. One	e dimensior	al barrier proble	ms : The Schröd	inger eq	uation is s	olved for	various one di	mensional proble	ems, e.g.	
finite b	arrier, finite	well, step potent	ial. t							
11. Solids, band gaps, angular momentum: The Schrödinger equation is applied to a 1D periodic potential, which can										
represent atomic nuclei in a solid. The solution demonstrates that the periodic potential leads to the creation of energy										
Danus and Dang gaps in solids.										
solution shows that the atoms can only take certain energies and that their energy is not zero, even at a temperature of										
absolute zero.										
13. Fre	e particles a	nd wave packets	: Solving the Sc	hrödinge	er equation	n for a Ga	ussian wave p	acket shows that	the width of	
the pac	cket will incr	ease and the amp	litude decrease	e as it pr	opagates.		P			
Sche	edule			•						
No.	1	2	3	4		5	6	7	8	
Date	10/4	10/11	10/25	11/	1	11/15	11/22	11/29	12/6	
No	, . Q	10	11	10		12	14	,		

No.	9	10	11	12	13	14			
Date	12/13	12/20	1/10	1/17	1/24	1/31			
Preparation None									
Record	and evaluatio	n method	25% homework, 75% exams						
Textbo	ok and referen	ces	Many quantum mechanics textbooks cover the content of the class.						
Self stu	ıdy	Review lecture notes before class.							
In addi	tion	-							