2019年度

(April 2019-March 2020)

東北大学理学部

Faculty of Science Tohoku University

Course	Semester/Credits	Instructor	Affiliation
Introduction to Basic Chemistry (基礎化学序論)	2 Semester 2 Credits	火原 彰秀	Laboratory of Nano-Micro Chemical Analysis

Course code/number : SCH-OCH201E

Course Title: Introduction to Basic Chemistry (基礎化学序論)

Purpose/Abstract :

This class is offered to freshmen enrolled in the AMC course. Fundamental knowledge and cutting-edge research in chemistry and materials science will be presented in the form of seminars in each laboratory. Throughout these seminars, the differences in high school-level and college-level chemistry will be emphasized, and students will be given motivation for their future studies.

Goal :

Understanding of the basic fields of university-level chemistry spread over a cross-section of each field, such as organic chemistry, inorganic chemistry, analytical chemistry, biochemistry and physical chemistry.

Contents :

Following the schedule distributed during the initial class, students will visit laboratories to attend seminars and be introduced to laboratory facilities and learn the importance of basic chemistry as well as cutting-edge research.

Books required/referenced :

Indicated by each instructor

Preparation and review :

Indicated by each instructor

Grading :

Class attendance, attitude and activity

Remarks :

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry I (専門基礎化学 I)	3 Semester 2 Credits	上田 潔	Institute of Multidisciplinary Research for Advanced Materials Laboratory of Electron and Molecular Dynamics

Course code/number : SCH-PCH211E

Course Title : Special Class in Basic Chemistry I

Purpose/Abstract:

In this lecture, we try to understand fundamentals of the quantum mechanics and quantum chemistry that are required for advanced chemistry courses. Starting with a lecture of the early quantum mechanics, we learn how to formulate the Schrödinger equation, which is the basic equation of quantum mechanics. The basic concept of wavefunctions (= solutions of the Schrödinger equations) are presented to understand the wave nature of particles in atomic scale. Then the simple models for vibrational and rotational motions of molecules, and the electronic state of the hydrogen atom are treated quantum mechanically as the prototypes for more complex atoms and molecules.

Goal :

Gain the skill to solve simple Schrödinger equations using a problem of a particle in a box. Extend it to solve quantum mechanical problems of the harmonic oscillator and the rigid rotator of diatomic molecules, and the electronic motion of the hydrogen atom.

Contents :

We will cover the following themes.

- 1. Outline and introduction to elementally physical chemistry
- Dawn of the quantum theory 2.
- 3. The classical wave equation
- The Schrödinger equation 4. A particle in a box 5.
- 6.
- General Principles of quantum mechanics The harmonic oscillator and the rigid rotator
- The hydrogen atom 8.

Books required/referenced :

Textbook: Physical Chemistry - a molecular approach by D.A.McQuarrie and J.D.Simon

Preparation and review :

Read the text book before and after the lectures and try to solve the examples in the textbook.

Grading :

Attendance + Mid-term exam. + Final exam. (+Additional exam)

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry Ⅱ (専門基礎化学Ⅱ)	3 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials
 Course code/number : SCH-INO211E Course Title : Special Class in Basic Chemistry II (AMC) Purpose/Abstract : This course builds from the basic electronic structure of atoms and molecules to bonding in compounds to structure and finally to the relationship between the structure and properties of compounds. If is my aim that students will develop tools needed to predict the properties from the electronic and physical structures of relatively simple compounds. Goal : The goal of this course is to learn the basics of electronic structures of atoms and molecules and bonding. In addition, students will be able to understand the relationship among those topics and the properties of compounds. Contents : Below is a tentative schedule and content for the course. The schedule may be changed due to time constraints or at the discretion of the professor. Elemental Origin and Atomic Composition Quantum Mechanics, Periodic Table General Properties and Periodicity, Magnetic Properties Covalent Bonding, Lewis Structure, Molecular Orbital Method Atoms, Molecule, polyatomic molecules Valence bonding method, hybrid orbital, <i>π</i> bond Molecular structure and polarity Symmetry and group theory Group theory molecular orbital, application to molecular vibration Crystal structure (1) Crystal structure (2) Ionic solids 			
14. Electric conduction, semiconductor, superconductivity Books required/referenced : Primary text: Jourganic Chemistry 6th Ed. General Chemistry 9th Ed. by Ebbing and Gammon and other texts			
Preparation and review : You should be reading the chapters and trying problems not assigned by the professor. Grading :			
Class attendance, homework, and two exams Remarks : breedlove@m.tohoku.ac.jp			

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry Ⅲ (専門基礎化学Ⅲ)	3 Semester 2 Credits	和田健彦	Laboratory of Nanobio Functional Materials/Chemical Biology & Supramolecular Photochirogenesis

Course code/number : SCH-ORG211E

Course Title : Basic Organic Chemistry I

Purpose/Abstract :

Objective and Summary of Class:

Students will learn how to understand organic chemical reactions. The purpose is to learn the reactions of basic organic compounds, such as alkanes, alkenes, and organic halides, via the flow of electrons shown using arrows.

- (1) Structure and Bonding.
- (2) Organic Compounds
- (3) Stereochemistry

(4) Alkanes

- (5) Alkenes
- (6) Alkynes

Intended for those students majoring in organic chemistry, this class will provide the broad fundamentals of organic chemistry needed to become a chemist. It is desirable to continue taking Chemistry C, Special Class in Basic Chemistry II, and General Organic Chemistry A, B and C as well as to take Exercises in Organic Chemistry A and Organic Chemistry I A and II A (class concerning spectroscopy)

Goal :

Understanding and mastering the basic properties and knowledge of organic chemistry.

Contents :

Basically, I will give quizzes for each chapter, so please do your best at preparation and review using the textbook.

Books required/referenced :

"Organic Chemistry 9th ed." by John McMurry

Preparation and review :

Preparation / review / tasks are instructed during lecture.

Grading :

Quiz and reports and a final exam. Quizzes will be given at the beginning of classes.

Remarks :

The office hours are basically from 10 am to 5 pm, from Monday to Friday.

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry IV (専門基礎化学IV)	3 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials
Course code/number : SCH-INO211E Course Title : Special Class in Basic Chemistry IV (AMC) Purpose/Abstract : This class will cover general analytical and inorganic chemistry, such as equilibria, acids and bases, acid-base equilibria, oxidation and reduction reactions, electrochemistry, etc. Goal : Students will gain an understanding in basic topics in analytical and inorganic chemistries, which will aid them in their future studies. Contents : Contents and Schedule: 1. Chemical equilibria 2. Acid and bases 3. Acid-base equilibria 4. Oxidation and reduction 5. Introduction to coordination complexes and solubility 6. Electrochemistry 7 Introduction to symmetry			
Books required/referenced : Inorganic Chemistry 6th ed. Ebbing and Gammon, General Chemistry 9th ed. Preparation and review : read and do practice problems Grading : Attendance, homework, and two exams Remarks : breedlove@m.tohoku.ac.jp			

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry A (物理化学概論A)	5 Semester 2 Credits	米田 忠弘	Advanced Scanning Probe Microscopy, IMRAM (Tagen)

Course code/number : SCH-PCH221E

Course Title : Thermodynamics and statistical physics

Purpose/Abstract :

In this course, we study thermodynamics, statistical mechanics, and the properties of many-body systems at finite temperature. The course is intended for the understanding both of chemical physical phenomena appeared in material science. We will cover the classical thermodynamics, the relationship between the macroscopic phenomena and the microscopic properties (statistical mechanics), and the application of these ideas to the observed states of actual materials.

Goal :

Chemical energetics; entropy; work and reversibility; phase equilibria; solution properties; a statistical approach to chemical energetics and equilibria Introduction to quantum chemistry:- applications to the bonding and structure of molecules, materials and nanoparticles. Molecular properties and reactivity

Contents :

The following topics will be discussed, each of which takes two weeks.

Properties of ideal gases

Statistical thermodynamics principles Statistical thermodynamics principles

Entropy accounting principles

Free-energy functions & the chemical potential

Application to multi-phase systems

Application to solids, surfaces & nanostructures

Fuel cell

Topics like as chemical reaction of fuel cells and spin ordering of magnetic materials are both included. Books required/referenced :

Hand out materials based on Physical Chemistry - molecular approach by D.A. McQuarrie and J.D. Simon

Preparation and review :

Homework quiz are assigned during class.

Grading :

Midterm and Final Examination, plus reports of several classes, and the attendance

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry B (物理化学概論 B)	4 Semester 2 Credits	組頭 広志	ナノ機能物性化学研究分野
Course code/number : SCH- Course Title : General Physica Purpose/Abstract : The course deals with the int formalism and mahtematical t molecular orbital theory. Goal : The aim of this courseis that theory: (2) explain the atomic st bond and molecular structures: Contents : The contents and schedule an (1) Introduction (2) Approximation method (3) Apporoximation method (4) Structure of the helium (5) Multiple electron atom (6) Multiple electron atom (7) Chemical bond: the hy (8) Chemical bond: The m (9) Chemical bond: The m (9) Chemical bond: The st (10) Bonding in polyatomic (11) Hybridization and mole (12) Conjugated pi-electron (13) Computational quantur Books required/referenced Physical Chemistry - a molect	PCH222E I Chemistry B troduction to the principles ools of quantum mechanic students are able to; (1) un- ructures and their spectros (4)be familiar with the cond re as shown in below: d in quantum mechanics: Vi- od in quantum mechanics: Vi- d in quantum mech	of quantum mechanics and the s; approximate methods; atom derstand approximation method copic properties; (3) understand rept of molecular orbital theory. ariational method Perturbation theory c spectra cular orbital method arrie and J.D.Simon urning is important. Students ar	ir application to chemical systems. Topics include the ic structure: the chemical bond, valence bond; and ds, including the variational method and perturbation the quantum mechanical description of the chemical
Grading : Students are evaluated on the Remarks :	eir class attendance, the mic	lterm report, and the final exan	nination.

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry C (物理化学概論C)	5 Semester 2 Credits	荒木 保幸	Institute of Multidisciplinary Research for Advanced Materials

Course code/number : SCH-PCH223E

Course Title : General Physical Chemistry C

Purpose/Abstract :

Chemical kinetics, also known as reaction kinetics, is the study of the speed of chemical processes.

A study of chemical kinetics includes investigations of how experimental conditions can influence on the speed of a chemical reaction. In this class, appropriate construction of mathematical models that can describe the characteristics of a chemical reaction will be discussed. Concept of "order of reaction" and "how to determine order of reaction along with integrated rate laws" are also the most important topics of this class. Moreover, the enzymatic reaction kinetics will be introduced to understand the specific examples of chemical reaction rate determination. Through the trial to solve the problems in the textbook, the establishment of the knowledge will be achieved.

Goal:

The main goal is to teach principles of reaction kinetics and catalysis. Topics covered include the laws and theories governing reaction rates and mechanisms in gas, condensed phase and at the solid-liquid interface. Modern experimental approaches to study kinetics in complex chemical and biochemical systems and analysis of experimental data will be introduced. Approaches for the Estimation of the rate constants of chemical reactions will be also discussed.

Contents :

Contents and Progress Schedule of the Class:

Contents and Progress Schedule of the Class: In this class, the contents from Chapter 27 to Chapter 31 of the textbook (Physical Chemistry – a molecular approach by D. A. McQuarrie and J.D. Simon) will be discussed. Chapter 27 / The Kinetic Theory of Gases Chapter 28 / Chemical Kinetics : Rate Laws Chapter 29 / Chemical Kinetics : Reaction Mechanisms Chapter 30 / Gas-phase Reaction Dynamics Chapter 31 / Solid and Surface Chemistry

Books required/referenced :

Textbook and References: Physical Chemistry - a molecular approach by D. A. McQuarrie and J.D. Simon

Preparation and review 3

Students who joins in this class is expected to keep prep.

Grading :

Record and Evaluation Method:

Class attendance (perfect attendance is 60 points), reports (perfect submission is 20 points) and scores of final examinations (full score is 20 points) are totally evaluated.

Person who gains over 80 ponts gets AA score.

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry D (物理化学概論D)	5 Semester 2 Credits	高岡 毅	Advanced Scanning Probe Microscopy 走査プローブ計測技術研究分野
Course code/number : Course Title : Principles Purpose/Abstract : Gain the skill for the an methods. We cover wide a magnetic resonance spectr Goal : Gain the skill for the an methods. We cover wide a magnetic resonance spectr Contents : 1) molecular spectrose 2) magnetic resonance 3) photochemistry, lass Books required/referen Textbook: Physical Che Preparation and review preparation and review grading : Score: every week's att Remarks : Katahira Campus - Sout Email: takaoka@taget Office hours: Mon - F Closed: Saturdays and	SCH-PCH224E of spectroscopic metho nalysis of molecules, f area of the spectroscop roscopy. nalysis of molecules, fe area of the spectroscop roscopy. opy NMR er spectroscopy nced : mistry - a molecular ap y : endance + Mid-term ex h Multidisciplinary Res n.tohoku.ac.jp ri, 9:00-17:00 d Sundays	ds in physical chemistry focusing on the understan- bic methods, including op ocusing on the understan- bic methods, including op oproach by D. A. McQuani cam + Final exam earch Laboratory Building	nding and application to the spectroscopic tical absorprion/emission spectroscopy and nding and application to the spectroscopic tical absorprion/emission spectroscopy and e and J.D.Simon

Course	Semester/Credits	Instructor	Affiliation
Exercises in Physical Chemistry A (物理化学演習A)	4 Semester 1 Credit	米田 忠弘 高岡 毅	Advanced Scanning Probe Microscopy & Laboratories at Katahira Campus.

Course code/number : SCH-PCH251E

Course Title : Exercises of problems and topics in physical chemistry A

Purpose/Abstract :

Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.

Goal :

In this course, we try to solve problems related to the issues discussed in AMC courses. The goal of this class is to require skills through these process.

Contents :

Part of this class will go along with 'Problems ands solutions to accompany Physical Chemistry - molecular approach by D.A. McQuarrie and J.D. Simon' in which the problems shown in each chapter of the text book are analyzed.

Books required/referenced :

Indicated by each instructor.

Preparation and review :

Homework quiz are assigned during class.

Grading :

class attendance, reports and scores of emaminations

Exercises in Physical Chemistry B (物理化学演習 B)5 Semester 1 Credit米田 忠弘Advanced Scanning Probe Microscopy & Laboratories at Katahira Campus.Course code/number : SCH-PCH252ECourse Title : Exercises of problems and topics in physical chemistry BPurpose/Abstract : Through lectures of p-sical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
Course code/number : SCH-PCH252E Course Title : Exercises of problems and topics in physical chemistry B Purpose/Abstract : Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
Course Title : Exercises of problems and topics in physical chemistry B Purpose/Abstract : Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
Purpose/Abstract : Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.			
special cases will be extended.			
Goal :			
require skills through these process			
Contents :			
Part of this class will go along with 'Problems and solutions to accompany Physical Chemistry - molecular approach			
by D.A. McQuarrie and J.D. Simon' in which the problems shown in each chapter of the text book are analyzed.			
Books required/referenced : indicated by each instructor			
Preparation and review :			
Homework quiz are assigned during class.			
Grading :			
class attendance, reports and scores of emaminations			
Remarks :			

Course	Semester/Credits	Instructor	Affiliation
General Inorganic and Analytical Chemistry A (無機分析化学概論A)	4 Semester 2 Credits	宇田 聡	Laboratory of Crystal Chemistry

Course code/number : SCH-INO221E

Course Title: General Inorganic and Analytical Chemistry A 無機分析化学概論A

Purpose/Abstract :

Thermodynamics is a powerful tool to understand the equilibrium phase relationship that is needed for materials processing including materials synthesis and growth from the conventional to the most advanced one. It also gives an insight of the nonequilibrium process in terms of the deviation from the equilibrium state. It should be also noted that thermodynamics is a powerful mean to prove your developing theory.

Although thermodynamics is one of the classic academics, it is not easy to learn. This is because the 'practical state' is often far different from the 'ideal' and only ideal-gas case with mathematical expressions are simply demonstrated in teaching without showing its applications to the 'real world'. In this class, students will have an exciting learning experience of the thermodynamics through its practical applications with simple math forms. In addition, this class is linked to the 'Exercises in Inorganic and Analytical Chemistry A' and students will learn about the practical use of thermodynamics by solving a few kinds of problems associated with chemical equilibrium or chemical reactions.

Goal :

· Learn 1st law and 2nd law of Thermodynamics.

Learn for haw and bind any of inclinity mannes.
 Learn the basic concepts of Gibbs free energy, partial molar quantity.

Learn the derivation of chemical potentials to understand the phase relationship.
Learn how to read equilibrium phase diagrams.

• To get the idea how to apply the thermodynamics to phase equilibria and reaction process in materials synthesis and growth process.

Contents :

I. Scope of Thermodynamics II. 1st law and 2nd law of Thermodynamics

Ш

Equilibrium Chemical Potentials and Activities IV.

V. Phase DiagramsVI. The Kinetics of Phase Transformations

Books required/referenced 3

Handout will be given before the class begins.

Preparation and review :

Assignments will be given.

Grading :

The results of class attendance, guizes and examination will be used for evaluation.

Remarks : Contact address:

uda@imr.tohoku.ac.jp Tel: 022-215-2100

Course	Semester/Credits	Instructor	Affiliation			
General Inorganic and Analytical Chemistry B (無機分析化学概論B)	4 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials			
Course code/number :	Course code/number : SCH-INO222E					
Course Title : General In	organic and Analytical	Chemistry B (AMC)				
Purpose/Abstract : This class is a survey of the course, we cover chap	Purpose/Abstract : This class is a survey of the general properties and reactivity of main group elements and transition metals. During the course, we cover chapters 9–22 in Shriver and Atkins' Inorganic Chemistry, 6th ed.					
Goal :						
The goal of this class is	to learn the general tre	ends in reactivity of the ch	nemical elements.			
Contents : Contents and Schedule: 1. Chemistry of main group elements 2. d-Block metals 3. Structure of d-block metal complexes 4. Basics of coordination chemistry						
Books required/referer Inorganic Chemistry 6th	nced: 1 Ed. (formerly Shriver	and Atkins)				
Preparation and review : read the chapters						
Grading : Attendance and two exams						
Remarks : breedlove@m.tohoku.ac.	jp					

Course	Semester/Credits	Instructor	Affiliation
General Inorganic and Analytical Chemistry C (無機分析化学概論C)	5 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials

Course code/number : SCH-INO223E

Course Title : General Inorganic and Analytical Chemistry C (AMC)

Purpose/Abstract :

The objective of this class is to introduce frontiers of inorganic chemistry. The aim of the class is to show how developments in inorganic chemistry impinges on the other disciplines, such as life science, condensed matter physics, and materials chemistry. We will discuss materials chemistry focusing on solid-state compounds, their structures, and electronic, magnetic, and optical properties. In addition, we will discuss nanomaterials and biosensors and introduce the area of catalysis. Goal :

Students will gain an understanding of the properties of solid-state materials and nanomaterials and learn about f-block elements. In addition, you will learn basic concepts of catalysis and biosensors.

Contents : Basic Contents and Schedule: 1. f-block elements

- 2. Introduction to catalysis
- $\frac{3}{4}$. Homogeneous catalysis Heterogeneous catalysis
- 5. Other catalytic systems (e.g., photocatalysis and electrocatalysis)
- 6.
- Biological inorganic chemistry Biological inorganic processes Band structures of solids and semiconductors 7 8.
- 9 Magnetic properties of solids
- 10.
- Electronic properties of solids Optical properties of solids 11.
- 12. Solid-state and materials chemistry
- Nanoscience
 Biosensors

Books required/referenced :

Inorganic Chemistry 6th Ed.

Preparation and review : reading

Grading :

- Class attendance and two exams Remarks :
- breedlove@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation		
General Inorganic and Analytical Chemistry D (無機分析化学概論D)	6 Semester 2 Credits	火原 彰秀	Laboratory of Nano-Micro Chemical Analysis		
(無機分析化学概論D) Course code/number : SCH- Course Title : General Analyti Purpose/Abstract : In this course, students will u Special Class in Basic Chemistry Goal : The purpose of this course is of selectivity and sensitivity. Contents : This is a lecture-centered cou 1) Introduction 2) Electrochemistry 3) Potentiometry and cou 4) Ion selective electrode 5) Two-phase equilibrium 6) Principle of chromatog 7) Partition chromatograph ai 9) Review of electroaly ai 9) Review of electroaly ai 10) States of atoms 11) Atomic absorption spe 12) Inductively-coupled pla 13) X-ray generation and cou	2 Credits INO224E cal Chemistry: two-phase e inderstand various analytic y IV. a to help students explain pro- urse with short quiz and hor lometry and other sensors a and extracrtion raphy oby nd size exclusion chromatog tical chemistry, extraction, a ctroscopy asma optical emission and m detection	quilibrium, electroanalytical che :al methods based on the funda rinciples, appratuses, and applie nework report. The contents ar graphy and chromatography hass spectroscopies	emistry, and instrumental analysis amental knowledge on analytical chemistry learnt in cations of the analytical methods from the viewpoint and schedule are as shon below:		
Books required/referenced : References are handed out at every class. Preparation and review :					
Students are expected to do l Grading : Quizzes in class, homework re Remarks : Bring your scientific calculate Office hour: weekdar 13:00-	Preparation and review : Students are expected to do homework (review). Grading : Quizzes in class, homework reports, and examination (s) Remarks : Bring your scientific calculator. E-mail:hibara@tohoku.ac.jp Lab homepage: http://www2.tagen.tohoku.ac.jp/lab/hibara/				

Course	Semester/Credits	Instructor	Affiliation
Exercises in Inorganic and Analytical Chemistry A (無機分析化学演習A)	4 Semester 1 Credit	宇田 聡	Laboratory of Crystal Chemistry

Course code/number : SCH-INO251E

Course Title: Exercises in Inorganic and Analytical Chemistry A 無機分析化学演習 A

Purpose/Abstract :

Obtain basic understanding of the thermochemistry and its practical approach in inorganic chemistry by solving various problem sets.

Goal :

To manipulate and solve the thermochemistry-related problems that students may encounter during their inorganic research works.

Contents :

Solve practical problems associated with basic thermochemistry after the short lecture is given at each class.

Books required/referenced :

A problem set will be given at every class hour.

Reprint from Dickerson, Gray, Darensbourg, Darensbourg (Chemical Principles)

Preparation and review :

Assignments are given as needed.

Grading :

Evaluation will be performed on the basis of attendance and results of the exercises.

Remarks :

Contact address : uda@imr.tohoku.ac.jp, 022-215-2100

Course	Semester/Credits	Instructor	Affiliation	
Exercises in Inorganic and Analytical Chemistry B (無機分析化学演習 B)	5 Semester 1 Credit	高坂 亘 関根 良博 福山 真央	Laboratory of Solid-State Metal-Complex Chemistry Laboratory of Nano/Micro Chemical Measurements	
Course code/number :	SCH-INO252E			
Course Title : Exercises Chemistry	in Inorganic and Anal and Ligand-Field Theo	ytical Chemistry: From ory	Basic Inorganic Chemistry to Coordination	
Purpose/Abstract : Conduct exercises in inorganic and analytical chemistry, in particular an area from basic inorganic chemistry to coordination chemistry related to the solid-state molecular chemistry, by explaining their fields.				
Goal : To gain a deeper understanding of the course. And we hope that you may be interested in the field of the solid-state molecular chemistry.				
Contents : Conduct exercises and explanation for the fields				

Books required/referenced :

The problem set will be given at each class hour, but the following texts may be useful for your study: Shriver & Atkins' Inorganic Chemistry, by P. Atkins et al., Oxford University Press.

D- and F-Block Chemistry, by C. Jones, RSC publisher.

Preparation and review :

The problems given at each class hour should be solved.

Grading :

Evaluation will be performed by your attendance records and results of the exercises.

Remarks :

w-kosaka@imr.tohoku.ac.jp, y-sekine@imr.tohoku.ac.jp 022-215-2033 maofukuyama@tohoku.ac.jp 022-217-5640

Course	Semester/Credits	Ir	nstru	uctor		Affiliation
General Organic Chemistry A (有機化学概論A)	4 Semester 2 Credits	水上	進			Cell Functional Molecular Chemistry
Course code/number : SCH- Course Title : General Organia Purpose/Abstract : Objective and Summary of C This class is part of organi Class in Basic Chemistry III, and D. The lecture covers th (1) Basic chemistry of org (2) Nucleophilic substituti (3) Diene and allylic syste (4) Conjugated and aroma (5) Aromatic substitution (6) Properties of alcohols, This class will provide t chemistry that are essential : Goal : Goal of Study:	ORG221E c Chemistry A lass: c chemistry classes, includin and General Organic Chemis e following topics: canic halides. on reactions and reaction th ms ttic compounds reactions phenols, ethers, and thiols. he broad fundamentals of for students to be a chemist	g Special stry A, C, eory organic		 (4) Structure of benzene and its derivatives, the principles of aromatic stability, heterocyclic aromatic compounds, the Huckel rule, and electrophilic substitution reactions (5) Chemical properties and reactivity of alcohols, phenols, epoxides, and thiols Contents : The class will involve chapters 10, 11, and 14-18 of Organic Chemistry 9th Ed. by John McMurry. However, the parts in chapter 14 covering spectroscopy will be omitted. 1. Introduction 2. Organohalides (Chapter 10) 3. Nucleophilic substitutions and eliminations (Chapter 11) 4. Conjugated compounds (Chapter 14) 5. Benzene and aromaticity (Chapters 15) 6. Electrophilic aromatic substitution (Chapter 16) 		
 To understand Properties of alkyl synthetic methods, r stability of allyl radio reactions Reactions of organ characteristics and r substitutions and alight 	halides and related com adical reactions, principle als, the characteristics of (nic compounds, especia eaction mechanisms of nuc atic reactions	pounds, es of the Grignard ally the leophilic		Books required McMurry Preparatio Problem-s Grading : Evaluati participation	uire y Or on a solvi ion	ed/referenced : ganic Chemistry 9th Ed. nd review : ing exercise will be performed on the basis of exams, class ad homework results.

Stability of conjugated chains, electrophilic reactions, kinetic and thermodynamic control of reactions, and the characteristics of Diels-Alder reactions

Course	Semester/Credits	Instructor	Affiliation
General Organic Chemistry C (有機化学概論C)	5 Semester 2 Credits	鬼塚和光	Synthesis of Organic Functional Molecules
Organic Chemistry C (有機化学概論C) Course code/number : Course Title : General O: Purpose/Abstract : Learning the chemistry synthetic applications. Goal : Understanding the chem Contents : Lectures based on the to Chapter 19 Aldehydes Chapter 20 Carboxylia Chapter 21 Carboxylia Chapter 22 Carbonyl Chapter 23 Carbonyl Chapter 23 Carbonyl Books required/referer McMurry-Organic Chem	2 Credits 2 Credits SCH-ORG223E rganic Chemistry C (A 7 of carbonyl compoun histry of carbonyl compound extbook, discussions in s and Ketones: Nucleop c Acids and Nitriles c Acid Derivatives Alpha-Substitution Rea Condensation Reactions hced : histry: chapters 19–23 7:	鬼塚 和光 MC, Chemistry of Carbony ds - main reactions, meth bounds. the class, tests ohilic Addition Reactions	Synthesis of Organic Functional Molecules yl Compounds) ods of synthesis, reaction mechanisms and
Grading : Attendance of the class, Remarks :	en-training in writing r	eaction mechanisms ons, tests results	

Course	Semester/Credits	Instructor	Affiliation	
Exercises in Organic Chemistry A (有機化学演習A)	4 Semester 1 Credit	永次 史 水上 進 和田 健彦	Institute of Multidisciplinary Research for Advanced Materials	
Course code/number : Course Title : Exercises	SCH-ORG251E in Organic Chemistry A	A		
Objective and Summary Understanding of org "Chemistry C" and "Sp "Laboratory Experiment	of Class: canic chemistry will be pecial Class in Basic C as in Chemistry A" (up	deepened by performing Chemistry Ⅲ" and in par to chapter 18 in McMurr	g exercises based on the lecture contents of rallel "General Organic Chemistry A" and y, "Organic Chemistry", 8th ed.)	
Goal : It will be possible to explain basic organic chemistry in real terms. In particular, organic reaction mechanisms can be described with arrows showing the movement of electrons				
Contents : The problems at the end of each chapter of McMurry's "Organic Chemistry", 8th ed. up to chapter 18 will be performed. Details will be explained during the 1st lecture.				
Books required/referenced : McMurry "Organic Chemistry", 8th ed. and 9th ed. References will be introduced accordingly.				
Preparation and review : You should study the exercise in the McMurry's "Organic Chemistry", 8th ed. (chapters 1-18)				
Grading : Evaluation will be based on attendance and the number of exercise answers given. Additional points will be given				
for answers written on the blackboard. Remarks :				

Course	Semester/Credits	Instructor	Affiliation
Exercises in Organic Chemistry B (有機化学演習B)	5 Semester 1 Credit	永次 史 和田 健彦	Institute of Multidisciplinary Research for Advanced Materials

Course code/number : SCH-ORG252E

Course Title : Exercises in Organic Chemistry B

Purpose/Abstract :

Understanding of organic chemistry will be deepened by performing exercises based on the lecture contents of "General Organic Chemistry C" and "General Organic Chemistry D" (from chapter 19 up to chapter 29 in McMurry, "Organic Chemistry", 8th ed.)

Goal :

It will be possible to explain basic organic chemistry in real terms. In particular, organic reaction mechanisms can be described with arrows showing the movement of electrons.

Contents :

The problems at the end of each chapter of McMurry's "Organic Chemistry", 8th ed. (chapters 19-29) will be performed. Details will be explained during the 1st lecture.

Books required/referenced :

McMurry "Organic Chemistry", 8th ed. References will be introduced accordingly.

Preparation and review :

You should study the exercise in the McMurry's "Organic Chemistry", 8th ed. (chapters 19-29).

Grading :

Evaluation will be based on attendance and the number of exercise answers given. Additional points will be given for answers written on the blackboard.

Course	Semester/Credits	Instructor	Affiliation
General Biochemistry (生物化学概論)	3 Semester 2 Credits	稲葉 謙次	IMRAM, Laboratory of Biomolecular Structure

Course code/number : SCH-BIC211E

Course Title: General Biochemistry (生物化学概論)

Purpose/Abstract:

To study the basic knowledge of molecular biology, biochemistry and structural biology and to understand biological phenomena at the molecular level, students will learn the following contents.

- 1) Structures and chemical properties of nucleic acids
- 2) Structures and chemical properties of amino acids and proteins
- 3) Biochemical methods for analyzing DNA sequence, amino acid sequence, protein structures and functions
- 4) Mechanisms of enzyme catalysis

Goal:

Students will gain deep insights into structures and physiological functions of nucleic acids, proteins and other important biomolecules. Also, students will understand molecular mechanisms of several important enzymes.

Contents :

Lectures will follow a textbook indicated below.

Especially, we will learn Chapters 1-9 of the textbook.

Books required/referenced :

Berg, Tymoczko and Stryer, Biochemistry, 7th international edition.

Preparation and review :

A short test will be given as a homework in the end of every class.

Grading :

Attendance, attitude in class and results of examinations will be taken into consideration for grading. Remarks :

Course	Semester/Credits	Instructor	Affiliation	
Biochemistry I A (生物化学 I A)	4 Semester 2 Credits	高橋 聡	Laboratory of Biological and Molecular Dynamics	

Course Title : The Molecular Design of Life and Biological Energy Transduction

Purpose/Abstract

Structures and properties of sugars and lipids,

 Structures and properties of sugars and lipids,
 Structures and properties of biological membranes,
 Biological energy transduction.
 It is desirable to consistently attend the discussions in Biochemistry II A concerning the DNA and RNA synthesis and metabolism of biomolecules. Goal :

Students will gain an understanding of the functions of sugars, polysaccharides, lipids and membranes on the basis of their structures and thermodynamics. In addition, students will understand the process in which glucose is converted into ATP as energy currency. Contents :

Carbohydrates 1 1st lecture Carbohydrates II Lipids and cell membranes I Lipids and cell membranes II 2nd lecture 3rd lecture 4th lecture 5th lecture 6th lecture Membrane Channels and Pumps I Membrane Channels and Pumps II Signal Transduction Pathways 7th lecture Mid term test Metabolism: Basic concepts and Design 8th lecture Metabolism: Basic concepts and I 9th lecture Glycolysis and Glugoneogengesis 10th lecture Glycolysis and Glugoneogengesis I 11th lecture The Citric Acid Cycle 12th lecture Oxidative Phospholylation I 13th lecture Oxidative Phospholylation II FInal test 14th lecture Epilogue: Lives of Warburg, Mayerhoff and Krebs Books required/referenced Berg, Tymoczko, Gatto and Stryer, Biochemistry, 9th edition (WH Freeman). The lectures will cover chapters 10 to 18 of the textbook. Preparation and review 3 Students will be asked to submit homework every week. Grading : The results of examinations and attendance will be taken into consideration for evaluation. Remarks : The contact address of Satoshi Takahashi is as follows:

IMRAM, east building I, room 307 (Katahira Campus). Email: satoshi.takahashi.a6@tohoku.ac.jp Students are welcomed to visit my office. Please make an appointment by email.

To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemistry, molecular biology and biophysics. Students will learn:

Course	Semester/Credits	Instructor	Affiliation	
Basic Experiments in Chemistry (基礎化学実験)	6 Semester 1 Credit	豊田 耕三	Laboratory of Fundamental Chemistry	
 Course code/number : SCH-OCH251E Course Title : Laboratory Experiments in Basic Chemistry Purpose/Abstract : You learn experimental operations of basic inorganic chemistry, basic analytical chemistry, basic physical chemistry, and basic organic chemistry. Goal : You can make fundamental experiments of basic inorganic chemistry, basic analytical chemistry, basic physical chemistry, and basic organic chemistry. Contents : Basic operations Calibration of volumetric measuring instruments Titrations Neutralization titration Oxidation-reduction titration Complexometric titration Neutralization titration Section of absorption spectra using UV-vis spectrophotometer Measurement of enthalpy changes in neutralization and dissolving salts 				
Books required/referenced : Textbooks (directions for the experiments) will be given in the class; other references are shown in the directions. Preparation and review : Read the textbook and draw a flow chart of the experiment, in advance.				
Grading : Evaluation will be perfo Remarks : Telephone : 022-795-66	Read the textbook and draw a flow chart of the experiment, in advance. Grading : Evaluation will be performed by your attendance records and laboratory reports. Remarks : Telephone : 022-795-6606 (staff room) : E-mail: toyota@m.tohoku.ac.jp			

Course	Semester/Credits	Instructor	Affiliation
Laboratory Experiments in Chemistry A (化学一般実験A)	6 Semester 5 Credits	豊田 耕三	Laboratory of Fundamental Chemistry

Course code/number : SCH-OCH252E

Course Title : Laboratory Experiments in Chemistry

Purpose/Abstract :

You learn fundamental experimental operations of inorganic chemistry, analytical chemistry, and the related fields. **Goal** :

You can make fundamental experiments of inorganic chemistry, analytical chemistry, and the related fields.

Contents :

- (1) Inorganic experiments
 - Synthesis of chemicals used for measurements
 - Complex synthesis
 - X-ray crystal structure analysis
 - UV-visible absorption spectra of metal complexes
 - Complex formation reaction rates Cyclic voltammetry of metal complexes
 - A polytical experiments
- (2) Analytical experiments
 - Determination of the composition of an iron phenanthroline complex by using spectrophotometry Determination of fluoride ion contents by using an iron-selective electrode
- (3) Optional experiments and exercises

Books required/referenced :

Textbooks (directions for the experiments) will be given in the class; other references are shown in the directions. **Preparation and review** :

Read the textbook and draw a flow chart of the experiment, in advance.

Grading :

Evaluation will be performed by your attendance records and laboratory reports.

Remarks :

Telephone: 022-795-6606 (staff room) : E-mail: toyota@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation	
Laboratory Experiments in Chemistry B (化学一般実験B)	7 Semester 6 Credits	豊田 耕三	Laboratory of Fundamental Chemistry	
Course code/number :	SCH-OCH253E			
Course Title : Laboratory	y Experiments in Chem	listry		
Purpose/Abstract : You learn fundamental @	experimental operations	s of physical chemistry, or	ganic chemistry, and biochemistry.	
Goal :				
You can make fundamer	ntal experiments of phy	vsical chemistry, organic c	hemistry, and biochemistry.	
 You can make fundamental experiments of physical chemistry, organic chemistry, and biochemistry. Contents: Physical chemistry experiments Optics and molecular spectroscopy Molecular spectroscopy in solutions Electronics Computer calculation experiments (2) Organic experiments Basic procedures for the organic chemistry experiments Grignard synthesis of triphenylmethanol Benzoin condensation and synthesis of hexaphenylbenzene Molecular modeling and various spectroscopic measurements (3) Biochemical experiments Enzyme Reaction kinetics Parige area eleming 				
Books required/referenced : Textbooks (directions for the experiments) will be given in the class; other references are shown in the directions.				
Preparation and review : Read the textbook and draw a flow chart of the experiment, in advance.				
Grading : Evaluation will be performed by your attendance records and laboratory reports.				
Remarks : Telephone: 022-795-6606 (staff room) : E-mail: toyota@m.tohoku.ac.jp				

Course	Semester/Credits	Instructor	Affiliation
Analytical Chemistry A (分析化学A)	5 Semester 1 Credit	BREEDLOVE BRIAN	Laboratory of Nanomaterials

Course code/number : SCH-INO301E

Course Title : Analytical Chemistry A (AMC)

Purpose/Abstract :

This class is designed to give a survey of analytical techniques, including theory and instrumentation, used to analyze and characterize compounds and their properties. This is by no means an in-depth or comprehensive course in analytical chemistry.

Goal:

Students will gain an understanding of the analytical techniques and their instrumentation.

Contents :

- 1. Background, including basic definitions
- $2\,.\ {\rm Spectroscopic\ methods}$
- 3. Spectrometry
- 4. Chromatography (if time permits)

Books required/referenced :

Holler, Skoog and Crouch "Principles of Instrumental Analysis 6th Ed."

Skoog, West, Holler and Crouch "Fundamentals of Analytical Chemistry", 9th Ed.

Preparation and review :

Reading appropriate chapters in the textbook

Grading :

Attendance and final exam

Remarks :

email: breedlove@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation	
Inorganic Chemistry I A (無機化学 I A)	6 Semester 1 Credit	谷口 耕治	Solid-State Metal-Complex Chemistry	
Course code/number : SCH-INO303E Course Title : Electronic Properties of Inorganic Materials Purpose/Abstract : Properties of solid are mainly dominated by an electronic structure of material. In this class, we will learn how to understand the atomic bonds, which form a crystal structure, and electric properties such as electrical conductivity of materials based on the electronic structure. Goal : The goal of this class is to understand the relationship between electronic structure and atomic bond/electrical conductivity of solid. One will understand the classification of atomic bonds and the definition of metal and insulatorthat				
 based on an electronic structure. Contents: Introduction (crystal structure, X-ray diffraction) Bonding character in crystal (Relationship between atomic bonding character and crystal structure) Quantum-mechanical treatment of atomic bond (Molecular orbital, LCAO-approximation, Hückel method) Band Theory (Expansion of molecular orbital to crystal) 				
Books required/referenced: The Electronic Structure and Chemistry of Solids (P.A. Cox, OXFORD), Transition Metal Oxides (P. A. Cox, OXFORD), Electronic Structure and The Properties of Solids (W. A. Harrison, Dover), etc. Preparation and review:				
The session time is limited and therefore self-directed learning is important. Students are required to review for each class. Grading :				

Class attendance and examination

Remarks :

Course	Semester/Credits	Instructor	Affiliation
Inorganic Chemistry I B (無機化学 I B)	6 Semester 1 Credit	岡田 純平	Laboratory of Crystal Chemistry

Course code/number : SCH-INO304E

Course Title : Inorganic Chemistry I B

Purpose/Abstract:

When we synthesize materials, we should refer to phase diagrams. Phase diagrams are one of the most important sources of information concerning the behavior of elements, compounds and solutions. They give us information of phase composition and phase stability as a function of temperature, pressure and composition. The course is intended to understand the principles of phase diagrams.

Goal:

The goal of this class is to understand and familiarize with binary and ternary phase diagrams.

Contents :

- 1. Introduction
 - (Basics for thermodynamics)
- 2. Phase equilibria and phase diagrams
- (One component phase diagram, Phase rule and equilibrium)
- $3\,.\,$ Phase diagrams of two-component systems
- (Solid solutions, Construction of equilibrium phase diagrams of two-component systems, Cooling curves) $4\,.\,$ Interpretation of phase diagrams
- (Phase composition, The Lever rule)

Books required/referenced :

- 1. Introduction to Metallurgical Thermodynamics, D.R. Gaskell, McGraw-Hill, 1980
- 2. Thermodynamics of Solids, R.A. Swalin, John Wiley, 1968

Preparation and review :

Reports

Grading :

Class attendance and examination

Course	Semester/Credits	Instructor	Affiliation	
Inorganic Chemistry II A (無機化学 II A)	6 Semester 1 Credit	宮坂 等	Solid-state metal-complex chemistry	
Course code/number : SCH-INO305E				
Course Title : Inorganic	Chemistry II A			
Purpose/Abstract :				
Topics will include the	structure and mechan	ical and physical properti	ies of supramolecular complexes and multi-	
dimensional framework systems. Each topic assigned to you should be pre-investigated before your presentation. We				
will get various knowledges on the basic science in the field of supramolecular complexes and multi-dimensional				
framework systems through our presentation and discussion.				

Goal:

The goal of this course is to gain an understanding of supramolecular chemistry and multi-dimensional framework systems and related chemistry.

Contents :

After discussion about the basics of supramolecular chemistry and its related chemistry, students will present a topic involving supramolecular chemistry or other related chemistry for discussion by the class.

Books required/referenced :

Steed and Atwood, Supramolecular Chemistry, 2nd Ed. Wiley, and others

Preparation and review :

Prepare a lecture and discussion on a topic supramolecular chemistry and related chemistry such as multidimensional networks and their physical properties

Grading :

Attendance and in-class discussions will be used to evaluate the students' progress.

Remarks :

miyasaka@imr.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation
Physical Chemistry II A (物理化学 II A)	6 Semester 1 Credit	大庭 裕範	Nano-Micro Chemical Measurements

Course code/number : SCH-PCH303E

Course Title : Physical Chemistry II A

Purpose/Abstract :

To understand basic principles of electron paramagnetic resonance (EPR) and to learn its application to studies of molecular science (structures, electronic states, dynamics and etc.).

Goal :

Subjects to be learned

- 1. Properties of a spin angular momentum.
- 2. Hhow magnetism is explained by electron spin.
- 3. Basic principles of magnetic resonance phenomenon
- 4. Magnetic interactions and its relation to molecular structures, electronic states and dynamics.
- $5\,.\,$ Microwave and other experimental techniques used in EPR.
- 6. Some of advanced techniques in EPR: pulse method, double resonances, high-field and high-frequency methods, and time resolved measurements

Contents :

- 1. Properties of a spin angular momentum.
- 2. Several types of magnetism and role of electron spin.
- 3. Basic principles of magnetic resonance phenomenon
- 4. Magnetic interactions of electron spin: Interactions with static field, nuclear spins and electron spins
- 5. Experimental techniques used in EPR
- 6. Some of advanced techniques in EPR: pulse method, double resonances, high-field and high-frequency methods, and time resolved measurements
- 90 minutes for each subject.

Books required/referenced :

References : J. A. Weil, J. R. Bolton and J. E. Wertz, "Electron Paramagnetic Resonance", John Wiley and Sons, 1994 Preparation and review :

none

Grading :

Attendance

Course	Semester/Credits	Instructor	Affiliation
Polymer Chemistry I (高分子化学 I)	6 Semester 1 Credit	及川 英俊	Organic Hybrid Nanocrystais

Course code/number : SCH-OCH301E

Course Title : Polymer Chemsitry I

Purpose/Abstract :

The category of polymer (or macromolecular) materials is so wide, for example, familiar fiber (or textile), rubber, plastics, and photo-resist to fabricate semiconductor integrated circuit (IC). Protein and nucleic acid are also a kind of polymer, so-called biopolymer.

In this lecture, synthesis, structure, and properties of polymers will be first introduced, which is considerably different from the case of ordinary organic low-molecular weight compounds. Next, high-performance and functional polymers, and hybrid polymer meterials will be explained in detail. In addition, biopolymer will be summarized from the viewpoint of biophysics.

Goal :

Aiming at making the backbone in the specific fields of advanced materials science in nano-science and nano-technology through basic understanding for polymer material chemistry.

Contents :

(1) Basic Principles

- (2) Molecular Weight and Polymer Solutions.
- (3) Chemical Structure and Polymer Morphorogy
- (4) Chemical Structure and Polymer Properties
- (5) Evaluation, Characterization and analysis of Polymers.

Books required/referenced :

"Polymer Chemistry - An Introduction-" (3rd Ed.) by Malcolm P. Stevens, Oxford Univ., Press, NY, 1999.

Preparation and review :

The session time is limited and therefore self-directed learning is important. Students are required to review for each class. Grading :

Attendance and regular examination

Remarks :

Course	Semester/Credits	Instructor	Affiliation
Organic Chemistry I A (有機化学 I A)	6 Semester 1 Credit	GRIDNEV ILYA	AMC Course

Course code/number : SCH-ORG301E

Course Title : Spectral identification of organic compounds

Purpose/Abstract:

Learning to elucidate structures of organic compounds from the data of MS, IR and NMR spectroscopy

Modern spectral techniques make possible elucidation of structures of organic compounds from spectral data. These skills will be trained via lectures on the priciples of the spectral methods and practical exercises for solving the structures.

Goal:

Train students to identify organic compounds from spectra

Contents :

Lectures, discussions in the class, joint solution of problems, tests.

- MS spectroscopy
- GC spectroscopy

1H and 13 NMR spectroscopy

Multinuclear NMR spectroscopy

2D NMR spectroscopy

Books required/referenced :

Silverstein. Spectroscopic identification of organic compounds

Preparation and review :

Reading textbook, solving problems

Grading :

Attendance of the class, activity in the discussions, tests results **Remarks** :

			Anniation
Organic Chemistry II A (有機化学 II A)	6 Semester 1 Credit	GRIDNEV ILYA	AMC Course
Course code/number : SC Course Title : Spectral iden Purpose/Abstract : Learning to elucidate struct Modern spectral technique skills will be trained via lea structures. Goal : Train students to identify Contents : Lectures, discussions in the MS spectroscopy GC spectroscopy 1H and 13 NMR spectro Multinuclear NMR spect 2D NMR spectroscopy Books required/reference Silverstein. Spectroscopic i Preparation and review : Reading textbook, solving Grading : Attendance of the class, ac	CH-ORG303E ntification of organic of est make possible eluc ctures on the pricipl organic compounds f ne class, joint solution oscopy troscopy ed : identification of organ problems ctivity in the discussio	compounds pounds from the data of M idation of structures of or les of the spectral metho rom spectra of problems, tests.	MS, IR and NMR spectroscopy ganic compounds from spectral data. These ods and practical exercises for solving the

Course	Semester/Credits	Instructor	Affiliation
Biochemistry II A (生物化学 II A)	6 Semester 1 Credit	松井 敏高	Cell Functional Molecular Chemistry

Course code/number : SCH-BIC301E

Course Title : Biochemistry of nucleic acid and protein synthesis.

Purpose/Abstract :

To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemsity, molecular biology and biophysics.

It is desirable to consistently attend the discussions in Biochemistry II B concerning the photosynthesis, protein turnover and protein trafficking.

Goal:

Students will gain an understanding of the various biological phenomenom related to synthesis of nucleic acids and proteins. Contents :

The lectures will cover chapters 28 to 32 of the textbook.

DNA replication, repair and recombination I 1st class chap 28

- 2nd class chap 28 DNA replication, repair and recombination II
- 3rd class chap 29 RNA synthesis and processing I RNA synthesis and processing II
- 4th class chap 29 5th class chap 30 Protein synthesis

6th class chap 31

The control of gene expression in prokaryotes 7th class chap 32 The control of gene expression in eukaryotes

including practical approach for heterologous protein expression

Books required/referenced

Berg, Tymoczko and Stryer, Biochemistry, 7th international edition (Freeman and Co. NY).

Preparation and review :

Some assignments would be given for better understandings.

Grading :

The results of examinations and attendance will be taken into consideration for evaluation.

Remarks :

The contact addresses of Toshitaka Matsui are as follows:

Office: South Multidisciplinary Research Laboratory Building 1, room 607 (Katahira Campus).

Office hour: Tuesday from 1:00pm to 3:00pm.

Email: toshitaka.matsui.d5@tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation
Biochemistry II B (生物化学 II B)	6 Semester 1 Credit	門倉広	Laboratory of Biomolecular Structure
Course code/number : SCH-BIC302E Course Title : Biochemistry II B Purpose/Abstract : To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemistry, molecular biology and biophysics. Goal : Students will understand the principles and basic mechanisms of photosynthesis, protein turnover and protein trafficking. Contents : 1. Light reactions of photosynthesis I			
 Light reactions of photosynthesis I Light reactions of photosynthesis II Calvin cycle and the pentose phosphate pathway Protein turnover and amino acid metabolism Intracellular compartments and transport I Intracellular compartments and transport II Final exam Handouts will be provided. The lectures will be interactive. 			
 Books required/referenced : 1. Berg, Tymoczko and Stryer, Biochemistry, international edition, 7th (Freeman and Co. NY) (chapters 19, 20, and 23). 2. Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, and Walter, Essential Cell Biology, 4th edition (Garland Science, NY) (chapters 14 and 15) 			
Preparation and review : Some assignments may be	e given for better underst	anding.	
Grading : The final grade in this course will be based on the final exam, quizzes, attendance, and active participation. Remarks : The contact address of Hiroshi KADOKURA Office: Laboratory of Biomolecular Structure, IMRAM South Multidisciplinary Research Laboratory Building 1, Room 508, Katahira Campus Email: hiroshi.kadokura.b3@tohoku.ac.jp			

Course	Semester/Credits	Instructor	Affiliation
Polymer Chemistry II (高分子化学 II)	6 Semester 1 Credit	及川 英俊	Organic Hybrid Nanocrystais

Course code/number : SCH-OCH302E

Course Title : Polymer Chemsitry II

Purpose/Abstract:

The category of polymer (or macromolecular) materials is so wide, for example, familiar fiber (or textile), rubber, plastics, and photo-resist to fabricate semiconductor integrated circuit (IC). Protein and nucleic acid are also a kind of polymer, so-called biopolymer.

In this lecture, synthesis, structure, and properties of polymers will be first introduced, which is considerably different from the case of ordinary organic low-molecular weight compounds. Next, high-performance and functional polymers, and hybrid polymer meterials will be explained in detail. In addition, biopolymer will be summarized from the viewpoint of biophysics.

Goal :

Aiming at making the backbone in the specific fields of advanced materials science in nano-science and nano-technology through basic understanding for polymer material chemistry.

Contents :

- (1) Free Radical Polymerization
- (2) Ionic Polymerization
- (3) Vinyl Polymerization with Complex Coordination Catalysts
- (4) Step-reaction and Ring-opening Polymerization

Books required/referenced :

"Polymer Chemistry -An Introduction-" (3rd Ed.) by Malcolm P. Stevens, Oxford Univ., Press, NY, 1999.

Preparation and review :

The session time is limited and therefore self-directed learning is important. Students are required to review for each class. Grading :

Attendance and regular examination

List of Frequently Used Academic Terms

学科	Department
数学	Mathematics
物理学	Physics
宇宙地球物理学	Astronomy and Geophysics
化学	Chemistry
地圈環境科学	GeoEnvironmental Science (a division of Earth Science)
地球惑星物質科学	Earth and Planetary Materials Science (a division of Earth Science)
生物学	Biology

教授	Professor
准教授	Associate Professor
講師	Lecturer
助教	Assistant Professor

学期		Semester
1セメスター 3セメスター 5セメスター		Spring Semesters
7セメスター	J	
2セメスター)	

4セメスター	ļ	E-11 Comparison
6セメスター		Fall Semesters
8セメスター)	

単位	Credit
授業	Course, Class
時間割	Schedule, Timetable