Subject (English)	Chemical and Biomolec Engineering I	Semester	Spring	Day/Slot	Thu./2 nd 10:30-12:00		
科目名 (日本語)	化学・バイオ工学 I			Day/Siot			
Course Code	TB37011	Course Numbering	TCH-MAC303		Period	Apr. 11 – Jul. 25, 2019	
	W "NAsta material		Campus	Aobayama			
Instructor (Post)	Yuji Matsumoto, <i>et al.</i> (Prof.)		Building	Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering			
Faculty	Department of Applied C Chemical Engineering an Biomolecular Engineering	Credits	2	Class Room	Room "Kasho 1"		

Class subject

-

Object and summary of class

We are surrounded by a large number of chemical products manufactured with various types of materials including organic, inorganic and their composite materials. Even in our body, biological materials are constantly being produced using a variety of chemical and biochemical reactions. The present course objective is to provide chemistry-oriented topics in developing such functional materials in various areas.

Keywords

Goal of study

In addition

Students will learn some basic aspects of chemical production, with special emphasis on how environment-friendly synthetic methodologies of materials have been developed for new advanced products.

(Cont	ents	and	p	rogre	SS SC	chec	dule	ot	Cl	ass

No	Date	Topics						
1	4/11	1. Chemistry of	1-1. Basic vacuum technology for materials processing					
2	4/18	materials processing in vacuum	1-2. Vacuum deposition techniques of inorganic and organic thin film materials					
3	4/25	2. Chemical functions	2-1. Basic concepts of coordination chemistry					
4	5/9	of coordination compounds	2-2. Applications to functional materials and biomedicine					
5	5/16	3. Chemistry of	3-1. Wet chemical processing for composite particles and thin films					
6	5/23	composite materials in wet processing	3-2. Controls over sizes and morphologies of composite particles					
7	5/30	4. Particle dynamics in	4-1. Aggregation / dispersion of particles					
8	6/6	nanofluids	4-2. Aggregation kinetics and colloidal dynamics					
9	6/13	5. Fine synthetic organic chemistry	5-1. Carboxylation reactions with carbon dioxide					
10	6/20	using metallic reagents	5-2. Synthesis and use of cyclic functional molecules					
11	6/27	6. Catalytic production of	6-1. Production of pure platform chemicals from biomass					
12	7/4	chemicals from biomass	6-2. Conversions of biomass-derived platform chemicals					
13	7/11	7. Chemistry of	7-1. Structure and bonding in organic molecules					
14	7/18	Carbon Nanomaterials	7-2. Fullerenes, carbon nanotubes and graphene					
15	7/25	Examination						
Preparation Knowledge on fundame		Knowledge on fundam	ental chemistry is required.					
Recoi			xaminations and/or reports, depending on topics. No make-up exam.					
Textbook and references		eterences	one. The handout and/or prints will be delivered by each instructor in his/her ass.					
Self s	Self study -							
	1	i						