AMB Course Syllabus
- 2018~2019 -

Faculty of Agriculture
INDEX

Timetable for AMB Course

AMB Course curriculum Taught in English

Introduction to Aquatic Production

Introduction to Natural and Agricultural Production

Modern Agriculture and Agricultural Science

Introduction to Physiology and Ecology

An Introduction to Bioindustrial Information Processing

Reading of Scientific Paper I

Reading of Scientific Paper II

Practice on marine Bio-resources Science

Physiology of Biological Resources

Animal Ecology and Ethology

Fish Genetics and Breeding science

Field Practice of Marine and Freshwater Production I/II

Fishery Science Practice I/II

Basic Chemistry, Practice

Basic Biology, Practice

Aquacultural Biology

Fisheries Biology and Ecology

Aquatic Plant Ecology

Marine Biochemistry

Biological Oceanography

Marine Biotechnology

Applied Genetics in Aquatic Organisms

Aquatic Invertebrate Biology

Applied Aquatic Botany

Marine Product Technology

Seafood management

Planktology

Integrate Aquatic Biology

Introduction to Fisheries Science

Practical Training

Marine Biology

Introduction to Resource and Environmental Economics

Applied Biological Chemistry

Current topics of Shellfish Physiology
Current topics of Fish Ecology（先端海洋生物生態学） ・・・・・・・・・・・・・・・・・・・ 41
Current topics of Fish Biochemistry（先端海洋生物化学） ・・・・・・・・・・・・・・・ 42
Current topics of Genetics in Aquatic organisms（先端海洋生物遺伝学） ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 43
Current topics of Coastal Ecology（先端沿岸生態学） ・・・・・・・・・・・・・・・・・・ 44
Current topics of Fish Molecular Biology（先端海洋分子生物学） ・・・・・・・・・・ 45
Current topics of Plankton Biology（先端プランクトン学） ・・・・・・・・・・・・・・・・・・・ 46
Science, Technology and Industry in Japan（日本の産業と科学技術） ・・・・・・・ 47
Multidisciplinary Internship（学際インターンシップ） ・・・ 48

Please Note : Anything contained on this syllabus may be subject to change at the discretion of the instructor.
Timetable for AMB Course

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50~10:20</td>
<td>AMB B</td>
<td>AMB B</td>
<td>AMB A</td>
<td>AMB A</td>
<td>AMB B</td>
</tr>
<tr>
<td>10:30~12:00</td>
<td>AMB B</td>
<td>AMB B</td>
<td>AMB A</td>
<td>AMB A</td>
<td>AMB B</td>
</tr>
<tr>
<td>13:00~14:30</td>
<td>AMB B</td>
<td>AMB B</td>
<td>AMB A</td>
<td>AMB A</td>
<td>AMB B</td>
</tr>
<tr>
<td>14:40~16:10</td>
<td>AMB B</td>
<td>AMB B</td>
<td>AMB A</td>
<td>AMB A</td>
<td>AMB B</td>
</tr>
<tr>
<td>16:20~17:50</td>
<td>AMB B</td>
<td>AMB B</td>
<td>AMB A</td>
<td>AMB A</td>
<td>AMB B</td>
</tr>
</tbody>
</table>

General Education Subjects
- An Introduction to Information Science B
- Mineralogy, Petrology & Geochemistry
- Foundations of Linear Algebra
- Biology A
- Mathematics A
- Physics A (Beginner)
- Chemical B
- Organic Chemistry B
- Chemistry B (Lab. Tour)
- Probability & Statistics
- Marine Biology [Lecture Room 9]
- Introduction to Aquatic Production
- Fish Genetics and Breeding Science
- Animal Ecology and Ethology
- Planktology [Lecture Room 9]
- Marine Biochemistry [Lecture Room 9]
- Reading of Scientific Paper I
- Integrated Aquatic Biology [Lecture Room 9]

Specialized Subjects
- Life and Nature
- Sports A
- Physics A (Beginner)
- Physiological Health
- Biochemistry B
- Marine Biochemistry [Lecture Room 9]
- Scientific Paper I [Each Laboratory]
- Fish Science Practice I/Basic Chemistry, Practice/Basic Biology, Practice [Student Laboratory]
- Field Practice of Marine Production I

Topics
- Information Science B
- Mineralogy, Petrology, & Geochemistry
- Foundations of Linear Algebra
- Biology A
- Mathematics A
- Physics A (Beginner)
- Chemical B
- Organic Chemistry B
- Chemistry B (Lab. Tour)
- Probability & Statistics
- Marine Biology [Lecture Room 9]
- Introduction to Aquatic Production
- Fish Genetics and Breeding Science
- Animal Ecology and Ethology
- Planktology [Lecture Room 9]
- Marine Biochemistry [Lecture Room 9]
- Reading of Scientific Paper I
- Integrated Aquatic Biology [Lecture Room 9]

Lab. Tours
- Chemistry B (Lab. Tour)
- Marine Biochemistry [Lecture Room 9]
- Scientific Paper I [Each Laboratory]
- Field Practice of Marine Production I

Notes
- AMB: AMBコース
- Japanese: AMBコース授業時間割表
- Fall Semester: 秋期
- Spring Semester: 春期
- Intensive course: 临時実習
- Practice on Marine Bio-resources Science
- Introductory Seminar

Additional Information
- 日本文献: AMBコース授業時間割表
- 日本文献: AMBコース授業時間割表
有学年入学者用授業時間割表

<table>
<thead>
<tr>
<th>8:50～10:20</th>
<th>10:30～12:00</th>
<th>13:00～14:30</th>
<th>14:40～16:10</th>
<th>16:20～17:50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.</td>
<td>水産利用学</td>
<td>Marine Product Technology</td>
<td>学生実験 II・基礎化学実験・基礎生物学実験</td>
<td>Fishery Science Practice II/Basic Chemistry, Practice/Basic Biology, Practice</td>
</tr>
<tr>
<td></td>
<td>[Lecture Room 10]</td>
<td></td>
<td>[Student Laboratory]</td>
<td></td>
</tr>
<tr>
<td>Tues.</td>
<td>Fishery Biology and Aquatic Plant Ecology</td>
<td>生物海洋学</td>
<td>附属化学実験</td>
<td>生物海洋学</td>
</tr>
<tr>
<td></td>
<td>[Lecture Room 9]</td>
<td>[Lecture Room 10]</td>
<td></td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Wed.</td>
<td>Biological Oceanography</td>
<td>海洋生物工学</td>
<td>附属生物学</td>
<td>海洋生物工学</td>
</tr>
<tr>
<td></td>
<td>[Lecture Room 9]</td>
<td>[Lecture Room 10]</td>
<td></td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Thur.</td>
<td>資源生物学の理論と実践</td>
<td>水産植物学</td>
<td>科学論文講読 II</td>
<td>生物情報処理概論</td>
</tr>
<tr>
<td></td>
<td>Physiology of Biological Resources</td>
<td>Applied Aquatic Botany</td>
<td>Reading of Scientific Paper II</td>
<td>An Introduction to Biindustrial Information Processing</td>
</tr>
<tr>
<td></td>
<td>[Lecture Room 10]</td>
<td>[Lecture Room 9]</td>
<td></td>
<td>[Each Laboratory]</td>
</tr>
<tr>
<td>Fri.</td>
<td>Applied Genetics in Aquatic Organisms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Lecture Room 10]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Half Semester

Mon.	有学実習	Practical Training	
Tues.	Seafood Management	Aquacultural Biology	
	[Lecture Room 9]	[Lecture Room 9]	
Wed.	水産無脊椎動物学	Current topics of Agricultural Plant Science	
	Aquatic Invertebrate Biology	[Lecture Room 10]	
Thur.	先端海洋生物生理学	食糧と化学	
	Current topics of Shellfish Physiology	Food and Chemistry	
	[Lecture Room 10]	[Lecture Room 10]	
Fri.	先端海洋生物化学		
	Current topics of Fish Biochemistry		
	[Lecture Room 10]	[Lecture Room 10]	

Intensive course

| 生産フィールド実習 II | Field Practice of Marine Production II |
| 生産フィールド実習 II | Field Practice of Marine Production II |

8th Semester

| Mon. to Fri. | 卒業論文 |
| | Graduation Thesis |

9th Semester

<p>| Mon. | 卒業論文 |
| | Graduation Thesis | |
| Tues. | | |
| Wed. | 資源環境経済学概論 |
| | Introduction to Resource and Environmental Economics |
| | [Lecture Room 10] |
| Thur. | 卒業論文 |
| | Graduation Thesis |
| Fri. | 応用生物化学 |
| | Applied Biological Chemistry |
| | [Lecture Room 10] |</p>
<table>
<thead>
<tr>
<th>日</th>
<th>テーマ</th>
<th>时段</th>
<th>地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.</td>
<td>水産資源生態学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Fisheries Biology and Ecology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物海洋学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Biological Oceanography</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>資源生物生態学</td>
<td>16:20〜17:50</td>
<td></td>
</tr>
<tr>
<td>Tues.</td>
<td>水産利用学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Marine Product Technology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquatic Plant Ecology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>海洋生物工学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Wed.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Marine Biotechnology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Thur.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Physiology of Biological Resources</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>沿岸生物学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Applied Genetics in Aquatic Organisms</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産利用学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Marine Product Technology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 9]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日</th>
<th>テーマ</th>
<th>时段</th>
<th>地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.</td>
<td>水産食品管理学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Seafood Management</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Tues.</td>
<td>水産増殖学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Wed.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Biological Oceanography</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>資源生物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Introduction to Resource and Environmental Economics</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Thur.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Current topics of Fish Ecology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物海洋生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Introduction to Coastal Ecology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Fri.</td>
<td>水産増殖学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日</th>
<th>テーマ</th>
<th>时段</th>
<th>地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.</td>
<td>実地研修</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Practical Training</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Tues.</td>
<td>水産増殖学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Wed.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Biological Oceanography</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>資源生物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Introduction to Resource and Environmental Economics</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Thur.</td>
<td>生物海洋学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Current topics of Fish Ecology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物海洋生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Introduction to Coastal Ecology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Fri.</td>
<td>水産増殖学</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産植物生態学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Applied Aquatic Botany</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>岸岸生物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日</th>
<th>テーマ</th>
<th>时段</th>
<th>地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.</td>
<td>産業フィールド実習-II</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Field Practice of Marine Production II</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Tues.</td>
<td>産業フィールド実習-II</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Field Practice of Marine Production II</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Wed.</td>
<td>産業フィールド実習-II</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Field Practice of Marine Production II</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Thur.</td>
<td>産業フィールド実習-II</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Field Practice of Marine Production II</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Fri.</td>
<td>産業フィールド実習-II</td>
<td>8:50〜10:20</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td></td>
<td>Field Practice of Marine Production II</td>
<td>10:30〜12:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産増殖学</td>
<td>13:00〜14:30</td>
<td>[Lecture Room 9]</td>
</tr>
<tr>
<td></td>
<td>Aquacultural Biology</td>
<td>14:40〜16:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水産無脊椎動物学</td>
<td>16:20〜17:50</td>
<td>[Lecture Room 10]</td>
</tr>
<tr>
<td>Subjects</td>
<td>Instructors</td>
<td>year</td>
<td>Categories</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>World of Fine Arts</td>
<td>M. Haga</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>History and Human Society</td>
<td>M. Nakagawa</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Life and Nature</td>
<td>M. Robert</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>History</td>
<td>M. Haga</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Linguistics</td>
<td>K. Yoshimoto</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Economics</td>
<td>D. Qin</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Foundations of Calculus</td>
<td>F. Hansen</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Probability & Statistics</td>
<td>F. Hansen</td>
<td>2nd</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Physics A</td>
<td>T. Koike</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Physics B</td>
<td>T. Koike</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Physics C</td>
<td>T. Koike</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Chemistry A</td>
<td>N. U. Zhanpeisov</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Chemistry B</td>
<td>N. U. Zhanpeisov</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Chemistry C</td>
<td>N. U. Zhanpeisov</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Biology A</td>
<td>M. Robert</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Biology B</td>
<td>M. Robert</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Biology C</td>
<td>M. Robert</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Mineralogy, Petrology & Geochemistry</td>
<td>N. U. Zhanpeisov</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Introductory Science Experiments</td>
<td>N. Nakamura et al.</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Introductory Seminar</td>
<td>IIE Teacher</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Basic Japanese 1</td>
<td>K. Yoshimoto et al.</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Basic Japanese 2</td>
<td>K. Yoshimoto et al.</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Intermediate Japanese</td>
<td>A. Uchiyama et al.</td>
<td>2nd</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>An Introduction to Information Science B</td>
<td>S. Ibose et al.</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Sports A</td>
<td>T. Fujimoto et al.</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Health</td>
<td>R. Nagatomi</td>
<td>1st</td>
<td>General Education Core Subjects</td>
</tr>
<tr>
<td>Introduction to Aquatic Production</td>
<td>M. Ikeda & T. Yorishue</td>
<td>1st</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Introduction to Natural and Agricultural Production</td>
<td>C. Yonezawa et al.</td>
<td>1st</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Modern Agriculture and Agricultural Science</td>
<td>The field of all Agriculture</td>
<td>1st</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Introduction to Physiology and Ecology</td>
<td>Iain Gleadall</td>
<td>1st</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>An Introduction to Bioindustrial Information Processing</td>
<td>Y. Sakai</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Reading of Scientific Paper I</td>
<td>The field of all App Mar Biol</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Reading of Scientific Paper II</td>
<td>The field of all App Mar Biol</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Subjects</td>
<td>Instructors</td>
<td>year</td>
<td>Categories</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Practice on Marine Bio-resources Science</td>
<td>M. Ikeda & T. Yorisue</td>
<td>1st</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Faculty Common Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduation Thesis</td>
<td>Instruction teacher</td>
<td>4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td>Professor & Assistant</td>
<td></td>
<td>Faculty Common Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Biological Resources</td>
<td>Ian Gleadall</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Ecology and Ethology</td>
<td>S. Katayama</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td>Fish Genetics and Breeding science</td>
<td>M. Nakajima</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td>Field Practice of Marine Production I</td>
<td>M. Ikeda & T. Yorisue</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Practice of Marine Production II</td>
<td>M. Ikeda & T. Yorisue</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery Science Practice I</td>
<td>The field of all App</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td>Mar Biol</td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td>Fishery Science Practice II</td>
<td>The field of all App</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td>Mar Biol</td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td>Basic Chemistry, Practice</td>
<td>The field of all App</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td>Mar Biol</td>
<td></td>
<td>Academic Common Subject</td>
</tr>
<tr>
<td>Aquacultural Biology</td>
<td>M. Osada</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Fisheries Biology and Ecology</td>
<td>S. Katayama</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Aquatic Plant Ecology</td>
<td>Y. Agatsuma</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Marine Biochemistry</td>
<td>Y. Ochiai</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Biological Oceanography</td>
<td>Y. Endo</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Marine Biotechnology</td>
<td>T. Suzuki</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Applied Genetics in Aquatic Organisms</td>
<td>M. Ikeda</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Academic group Common Subject</td>
</tr>
<tr>
<td>Aquatic Invertebrate Biology</td>
<td>K. Takahashi</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Applied Aquatic Botany</td>
<td>M. Aoki</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Marine Product Technology</td>
<td>T. Yamaguchi</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Seafood Management</td>
<td>Ian Gleadall</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Planktology</td>
<td>W. Sato-Otokishi</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Integrate Aquatic Biology</td>
<td>M. Ikeda</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Marine Applied Biochemistry</td>
<td>M. Nishikawa</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical field Subjects</td>
</tr>
<tr>
<td>Related Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Fisheries Science</td>
<td>T. Suzuki et al</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Practical Training</td>
<td>T. Suzuki et al</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Marine Biology</td>
<td>Ian Gleadall</td>
<td>2nd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Current topics of Agricultural Plant Science</td>
<td>Y. Konno et al.</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Resource and Environmental Economics</td>
<td>F. Ito et al.</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Introduction to Applied Animal and Dairy Science</td>
<td>F. Terada et al.</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Applied Biological Chemistry</td>
<td>M. Miyao et al.</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Food and Chemistry</td>
<td>M. Yamashita et al.</td>
<td>3rd or 4th</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
<tr>
<td>Current topics of Shellfish Physiology</td>
<td>K. Nagasawa</td>
<td>3rd</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current subject</td>
</tr>
</tbody>
</table>
Graduation Requirements

The minimum number of credits required for graduation is 134.

1. A minimum of 113 credits from obligatory subjects 必修科目 113 単位以上
2. A minimum of 21 credits from elective specialized subjects 専門選択科目 21 単位以上

Minimum credits for graduation

(1) General Education Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Credits</th>
<th>Year</th>
<th>Categories</th>
<th>Credits</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Studies 人間論</td>
<td>2</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Studies 社会論</td>
<td>2</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Studies 自然論</td>
<td>2</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Sciences 人文科学</td>
<td>2</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Sciences 社会科学</td>
<td>2</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences 自然科学</td>
<td>22</td>
<td>2</td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本語</td>
<td>10</td>
<td></td>
<td>Specialized</td>
<td></td>
<td>Intensive course</td>
</tr>
<tr>
<td>Introductory Seminar 基礎ゼミ</td>
<td>2</td>
<td></td>
<td>Specialized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Sciences 情報科目</td>
<td>2</td>
<td></td>
<td>Specialized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports スポーツ</td>
<td>1</td>
<td></td>
<td>Specialized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Care 体と健康</td>
<td>2</td>
<td></td>
<td>Specialized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Specialized Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Obligatory</th>
<th>Elective*</th>
<th>Total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Common Subjects 学部共通科目</td>
<td>19</td>
<td>(2)</td>
<td>21</td>
<td>*21 or more elective credits must be acquired from among the 30 elective credits listed in parentheses.</td>
</tr>
<tr>
<td>Academic Common Subjects 学科共通科目</td>
<td>16</td>
<td>(4)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Academic Group Common Subjects 学科群共通科目</td>
<td>14</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Technical Field Subjects 専門領域科目</td>
<td>0</td>
<td>(17)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Current Subjects カレント科目</td>
<td>15</td>
<td>(7)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>21</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

The credits acquired in each semester (example)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd -3rd Semester</td>
<td>Obligatory: Including Practice on Marine Bio-resources Science 臨海実習を含む</td>
</tr>
<tr>
<td>4th Semester</td>
<td>Obligatory Elective</td>
</tr>
<tr>
<td>5th Semester</td>
<td>Obligatory: Including Field Practice of Marine Production 生産フィールド実習を含む Elective</td>
</tr>
<tr>
<td>6th -7th Semester</td>
<td>Obligatory: Including Field Practice of Marine Production 生産フィールド実習を含む Elective</td>
</tr>
<tr>
<td>8th-9th Semester</td>
<td>Obligatory: Graduation Thesis</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
</tr>
</tbody>
</table>
1. Class subject
Biological productivity in aquatic zone and restoration from tsunami disaster

2. Object and summary of class
Onagawa Town was one of the most prosperous fishing ports in Japan. However, the 9.0-magnitude Tohoku-Pacific Ocean Earthquake generated a tsunami as high as 15 meters in Onagawa, which caused the town to subside by 1 meter, and completely destroyed its central area. The ria coast of Onagawa and coastal region along the Pacific Ocean had been severely stricken by the tsunami. Various coastal organisms have acclimated to tsunami perturbations and survived in the area. In order to promote reconstruction of tsunami-stricken areas such as Onagawa with respect to aquatic production (fish catching, aquaculture and fishery processing), it might be a promising measure to scientifically focus on the adaptability of coastal ecosystems in the area against tsunami perturbations, and to raise public awareness of the uniqueness of the coastal ecosystems and biodiversity. This subject highlights tsunami damage and the circumstance of reconstruction in Onagawa Town including coastal ecosystems, and brings to understand the importance of constructing new relationship between natural biological productivity and human activity. Field lecture will be held on April in Onagawa Town with a two-day trip. Classroom lecture will be held on May or June at Aobayama Campus.

3. Keywords
marine biodiversity, fisheries, aquaculture, tsunami disaster, reconstruction,

4. Goal of study
At the end of the semester, students will
- understand about tsunami disaster.
- understand the importance of relationship between natural aquatic production and human activity.
- understand sustainable biological productivity and the application to reconstruction of human society.

5. Contents and progress schedule of class
 - Introduction to studies of marine science, biological productivity and restoration
 - Field lecture about tsunami damage, the restoration of coastal ecosystems, and the circumstance of reconstruction in Onagawa Town (including Onagawa Field Center)
 - Classroom lecture
 - Group discussion

6. Preparation
For more information, note our announcement in the curriculum guidance during the first week of April.

7. Record end evaluation method
 - Attendance: 40%
 - Activeness: 20%
 - Report: 40%

8. Textbook and references
Preparing textbook

9. Self study
None

10. In addition
Contact e-mail address:
 - Ikeda: minoru.ikeda.a6@tohoku.ac.jp
 - Yorisue: takefumi.yorisue.d5@tohoku.ac.jp
<table>
<thead>
<tr>
<th>Subject</th>
<th>Introduction to Natural and Agricultural Production (陸圏環境コミュニケーション論)</th>
<th>Day/Period</th>
<th>Fri./4th</th>
<th>Object</th>
<th>AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor (Post)</td>
<td>Professors of Field Science Center etc (Prof.)</td>
<td>Categories</td>
<td>Specialized Subjects</td>
<td>Preferable Participants</td>
<td>1st-year students</td>
</tr>
<tr>
<td>Position</td>
<td>Faculty of Agriculture (Graduate School of Agricultural Science)</td>
<td>Credits</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject Numbering</td>
<td>AAL-OAG201B</td>
<td>Language Used in Course</td>
<td>English/Japanese</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Class subject**

Ecosystems including forest, grassland, farmland, paddy field and biological productivity

2. **Object and summary of class**

The purpose of the course is to get understanding of agronomical thinking and sustainable biological productivity through 1 day filed trip, classroom lectures and discussion time. Field trip will be held in May and the destination is the Integrated Terrestrial Field Station (Kawatabi in Naruko area). Classroom lecture will be held in May and June.

3. **Keywords**

agronomical science, integrated terrestrial field, ecosystem, environmental issues, animal waste treatment, grasslands, farmlands, soil science, forestry

4. **Goal of study**

At the end of the semester, students will
- experience about fundamental field science
- understand agronomical thinking
- understand sustainable biological productivity

5. **Contents and progress schedule of class**

1. 1st-5th: Introduction to Agronomical science (Profs. of Field Science Center)
2. 6th: Field lecture about forest ecosystem (Profs. of Forest Ecology)
3. 7th: Field lecture about farmlands on hilly and mountainous area (Profs. of Environmental Crop Science)
4. 8th: Field lecture about grasslands, farm animals and environmental issues (Profs. of Land Ecology)
5. 9th: Field lecture about animal waste treatment, biogas production and recycling system (Profs. of Sustainable Environmental Biology)
6. 10th: Field lecture about andosol (volcanic ash soil) and environmental issues on farmland (Profs. of Environmental Crop Science)
7. 11th: Field lecture about management of animal feeding and animal welfare (Profs. of Land Ecology)
8. 12th: Field observations for integrated terrestrial field (Profs. of Field Science Center)
9. 13th: Group discussion (Profs. of Field Science Center)
10. 14th: Class room lecture about agriculture and ecosystem (Profs. of Field Science Center)
11. 15th: Class room lecture about spatial science and agronomy (Profs. of Field Science and Technology for Society)

6. **Preparation**

Read books related on agronomy, soil science, animal science, forest science and environmental science before the field trip.

7. **Record end evaluation method**

- Attendance and participation for field trip (40%)
- Attendance and participation for classes (30%)
- Report about field trip (30%)

8. **Textbook and references**

URL: http://www.agri.tohoku.ac.jp/kawatabi/index.html

9. **Self study**

Write a report after the field trip. Write down what did you see, what did you feel. We welcome your consideration based on the group discussion.

10. **In addition**

Field trip will be held in May (Fri.), 8:00 - 18:30. Gathering Spot is Aobayama Campus (Faculty of Agriculture Building).

Please carry rain cape, protection against cold weather, insurance card and lunch to field trip.

E-mail address: chinatsu@m.tohoku.ac.jp
1. Class subject
 Grasp of problems according to water, foods, energy, biomaterials, environment and health

2. Object and summary of class
 The purpose of the course is to let participants understand and grasp the many agricultural problems such as water, foods, energy, biomaterials, environment and health through the unique lecture with laboratory tours. Students can go to more than 20 laboratories (about the half numbers of all lab. of our faculty) in the course to know and understand the characteristics of each laboratory’s state of education and research. Students will increase knowledge step by step through explanation of stuffs and discussion with each others.

3. Keywords

4. Goal of study
 At the end of the semester, students will
 - have basic knowledge about the agriculture science including the academic field of plant science, animal science, fishery science, agricultural chemistry, food science at present stage in our faculty.
 - have deeper understanding of the strategy for survival of humans in the future by utilizing the agriculture at high levels.

5. Contents and progress schedule of class
 The education and research of our Faculty of Agriculture, and the Graduate School of Agricultural Science are operating in the six different fields of plant science, material environmental economy, applied animal science, marine bioscience, biochemistry and bioscience. In the lecture, we will explain the dairy situation in each laboratory including laboratory tours style.
 Students will be separated into six groups and will take a lecture by stuffs of the lab. in the rotation system. Each student can visit one to four laboratories in one day.
 1. Guidance “Introduction of agricultural sciences”
 16. Examination

6. Preparation

7. Record end evaluation method
 Students must be attend the laboratory tour more than 60% and take an examination (40%) of the last day.

8. Textbook and references
 Textbook and references will be notified at the class.

9. Self study

10. In addition
 Students who have some questions can visit to ask to each laboratory until 18:00 after lecture time.
 Contact persons will be notified at the class.
 Contact: skata@tohoku.ac.jp

2. Object and summary of class: A beginners course in the basics of physiology.
 Students will gain (for Animal Physiology) a broad basic knowledge of nervous and neuroendocrine organs and their functional organization; (for Plant Physiology) the basics of Plant Physiology, followed by recent examples of research in these areas.

3. Keywords: Nervous system, life functions, hormones, plant biodiversity, photosynthesis, immune systems

4. Goal of study: Learn the basics of physiology in order to be able to receive instruction in Applied Marine Biology specialist topics.

5. Contents and progress schedule of class
 (2). The nervous system. (1) Neuron structure & function.
 (3). The nervous system. (2) Sensory systems.
 (4). The nervous system. (3) Functional organization.
 (5). The endocrine system. (1). Cell signalling and endocrine regulation.
 (6). The endocrine system. (2). Oogenesis, spermatogenesis & fertilization.
 (7). The endocrine system. (3). Reproductive hormones.
 (8). The immune system.
 (9). Mid-term review and examination.
 (14). Plant body defences, environmental responses & information transmission.
 (15). End-of-term examination.

6. Preparation: Preparative studies, etc.: Before the course begins, skim through the textbooks and identify areas that you find difficult to understand. Aim to improve your understanding by the end of the course.

7. Record and evaluation method: Reports (90%). End-of-term examination (10%).

9. Self study: As appropriate. There is much to learn, so you should revise the lecture content in the evening after each lecture. Ensure you have understood the content and will be able to pass the examinations.

10. In addition: Note that this course is broad: later courses will explore these topics more deeply. Any questions, etc., should be addressed to the lecturer directly during or after lectures.
1. Class subject
Introduction to fundamentals of methods for processing biological sequence data

2. Object and summary of class
The first half deals with the methods for computing the similarity between two or more biological sequences, and the remaining half introduces various methods for other types of sequence processing.

3. Keywords
- biological sequence
- string
- similarity
- alignment
- phylogenetic tree
- gene mapping
- short read assembly

4. Goal of study
The goal is to understand the theoretical background with respect to validity or limitation of computer processing of biological sequences.

5. Contents and progress schedule of class
1. Preliminaries
2. Similarity between sequences
3. Pairwise alignment (global alignment)
4. Pairwise alignment (local alignment and alignment with affine gap penalty)
5. Multiple alignment (star alignment)
6. Multiple alignment (progressive method)
7. Amino acid substitution matrix
8. BLAST
9. PSI-BLAST and HMM
10. Phylogenetic tree (ultra-metric tree and additive tree)
11. Phylogenetic tree (UPGMA and NJ method)
12. Gene mapping
13. Short read assembly (with reference sequence)
14. Short read assembly (de novo)
15. Suggested answers of the term paper

6. Preparation
Prepare for the next lesson by conducting a Web search on the topic words related to the lesson.

7. Record end evaluation method
- Attendance: 20%
- Term paper: 80%

8. Textbook and references
Recommended book:

9. Self study
Review the previous lesson using the handout.

10. In addition
Office hours: 16:30-18:00 Mon-Wed, and Fri at Room E410

E-mail address: yoshifumi.sakai.c7@tohoku.ac.jp
Reading of Scientific Paper I

Day/Period: Thur./3rd
Object: AMB
Categories: Specialized Subjects
Preferable Participants: 2nd-year students
Position: Faculty of Agriculture (Graduate School of Agricultural Science)
Credits: 1
Semester: 5
Subject Numbering: AAL-APS301B
Language Used in Course: English/Japanese

1. Class subject

Reading scientific papers in English

2. Object and summary of class

The purpose of the course is to let students understand the composition and critical reading of scientific paper.

3. Keywords

- Critical reading, discussion

4. Goal of study

Students will
- have practical capability to read scientific paper in marine biology.
- have knowledge of technical terms on studying field of marine biology.

5. Contents and progress schedule of class

The course will be conducted by AMB laboratories.
- Students will take a class in each laboratory three to four times
- Scientific paper to read will be provided from each laboratory
- The format of a class follows an instruction of instructor of each laboratory

6. Preparation

Read the parts to be dealt in each class in advance.

7. Record end evaluation method

The academic achievement will be evaluated by attendance and understanding of class subject of each laboratory.

8. Textbook and references

Scientific paper to read will be provided by each laboratory in advance and students may be recommended to prepare well.

9. Self study

Read the related scientific articles in each field.

10. In addition

Students may visit the instructor of each class anytime.
<table>
<thead>
<tr>
<th>Subject Numbering</th>
<th>Reading of Scientific Paper II (科学論文講読 II)</th>
<th>Day/Period</th>
<th>Thur./3rd</th>
<th>Object</th>
<th>AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor (Post)</td>
<td>Professors from all the fields of AMB (Prof. & Assoc. Prof.)</td>
<td>Categories</td>
<td>Specialized Subjects</td>
<td>Preferable Participants</td>
<td>3rd-year students</td>
</tr>
<tr>
<td>Position</td>
<td>Faculty of Agriculture (Graduate School of Agricultural Science)</td>
<td>Credits</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Class subject

Reading scientific papers in English

2. Object and summary of class

The purpose of the course is to let students understand the composition and critical reading of scientific paper.

3. Keywords

Critical reading, discussion

4. Goal of study

- have practical capability to read scientific paper in marine biology.
- have knowledge of technical terms on studying field of marine biology.

5. Contents and progress schedule of class

The course will be conducted by AMB laboratories.
- Students will take a class in each laboratory three to four times
- Scientific paper to read will be provided from each laboratory
- The format of a class follows an instruction of instructor of each laboratory

6. Preparation

Read the parts to be dealt in each class in advance.

7. Record end evaluation method

The academic achievement will be evaluated by attendance and understanding of class subject of each laboratory.

8. Textbook and references

Scientific paper to read will be provided by each laboratory in advance and students may be recommended to prepare well.

9. Self study

Read the related scientific articles in each field.

10. In addition

Students may visit the instructor of each class anytime.
Subject
Practice on Marine Bio-resources Science （臨海実習）

Day/Period
Intensive Course

Object
AMB

Instructor (Post)
Ikeda M. (Assoc. Prof), Yorisue T. (Assist. Prof.)

Categories
Preferable Participants

Specialized Subjects
1st-year students

Position
Faculty of Agriculture (Graduate School of Agricultural Science)

Credits
1

Semester
3

Subject Numbering
AAL-APS410B

Language Used in Course
English/Japanese

1. Class subject
Observation of marine biodiversity and understanding the importance for sustainable productions.

2. Object and summary of class
To understand importance of marine biodiversity.

1. Field trip to the rocky intertidal area and observation of the biodiversity.
2. Observation of early development of marine invertebrates

3. Keywords
marine ecosystem, biodiversity, production, aquaculture

4. Goal of study
Students will be able to understand the importance for marine biodiversity through the observation of species diversity and development of marine organisms.

5. Contents and progress schedule of class

Four days in 2nd semester (August)
- Days 1-2: Field trip to the rocky intertidal area and survey the biodiversity.
- Days 3-4: Observation of early development of marine invertebrates.

6. Preparation
For more information, note our announcement on June or July.

7. Record end evaluation method
- Attendance: 40%
- Activeness: 20%
- Report: 40%

8. Textbook and references
Preparing textbook

9. Self study
None

10. In addition
Contact e-mail address:
- Ikeda: minoru.ikeda.a6@tohoku.ac.jp
- Yorisue: takefumi.yorisue.d5@tohoku.ac.jp
1. Class subject: **Physiology of Biological Resources**

2. Object and summary of class
 This course provides a basic understanding of the principles of how animals stay alive and reproduce within an environment differing significantly from their internal state.

3. Keywords: Neuroendocrinology, reproduction, osmoregulation, immunology.

4. Goal of study: Describe the ways and means by which cells in a multicellular organism communicate to maintain the organism's integrity and ensure the production of a new generation. Describe the concept of homeostasis and its application in neuroendocrine regulation, osmoregulation and immunology.

5. Contents and progress schedule of class
 (1-4) Neuroendocrinology.
 (5-9) Endocrinology of reproduction.
 (10). Mid-term review.
 (11-12). Osmoregulation.
 Significance of the control of osmotic pressure and the function of the regulatory cells. Mechanisms of the hormonal control of osmoregulation.
 (13-14). Immunology.
 Natural immunity and the recognition and removal of foreign material from the body. Vertebrate and invertebrate immune systems.
 (15). End-of-term examination.

6. Preparation: Before attending each lecture, review the previous lecture and ensure you are ready to study.

7. Record and evaluation method: Long essay-style reports (90%). Attention and participation during lectures (10%).

9. Self study: This course covers a number of difficult topics and concepts - it is deep as well as broad. You should review each lecture at the end of the day and ensure that you have understood everything.

10. In addition: Contact the lecturer any time if you have questions or any difficulty in understanding the course content.
Subject Information

Subject: Animal Ecology and Ethology (資源動物生態学)

Day/Period: Mon./2nd

Object: AMB

Instructor (Post): S. Katayama (Prof.)

Categories: Specialized

Subjects: Preferable

Participants: 2nd-year students

Position: Faculty of Agriculture (Graduate School of Agricultural Science)

Credits: 2

Semester: 5

Subject Numbering: ABS-APS239E

Language Used in Course: English

1. Class subject

Relationships among organisms and those between organisms and their environment as fundamental factors supporting biological production in nature.

2. Object and summary of class

More than 1500 thousand of organisms are recognized to live on the earth now. These numerous organisms maintain various interrelationships with surrounding organisms and its environmental factors, which may support biological production in nature.

The present subject addresses fundamental concepts of ecology necessary to understand mechanisms of nature in each category of population, community, and ecosystem.

3. Keywords

- biological production
- population
- biological community
- marine ecosystem
- environment
- interspecific relations

4. Goal of study

Students can understand the structure and function of biological nature, and find an outline of the relationships between organisms and its environment.

5. Contents and progress schedule of class

1. Species (binomial nomenclature, reproductive isolating, crossbreed)
2. Classification (five kingdoms, three domains) Biological production in each ecological category: producer, consumer, decomposer.
3. Divergent evolution, natural selection
4. Adaptation, Speciation, & Diversity
5. Niche, fitness
6. Interspecific relationships (competition, predation etc.), Gause's Law
7. Population; definition, mode of life, population growth models, r-K strategy
8. Category of interspecific relationships (competition, predation etc.), Gause's Law
9. Concept of ecological niche, relationship between niche and competition
10. Community theory, ecological succession, climax
11. Structure and function of ecosystem,
14. Biological and physical cycle in nature
15. Ecosystem service

6. Preparation

Many books are published on ecosystem, environment, and bio-diversity, from which it is required to obtain various information about contemporary ecological problems.

7. Record end evaluation method

Evaluation will depend on achievement of final examination. Furthermore, submissions of short term papers are required several times in the course.

8. Textbook and references

9. Self study

Students should have concern over topics on nature and organisms shown in various media and consider their biological and ecological meanings.

10. In addition

Office hour for inquiry about the course should be offered any time at the Laboratory of Fisheries Biology and Ecology.

E-mail: skata@tohoku.ac.jp
1. Class subject

Understand the basic theory of inheritance and the application methods for the genetic improvement in aquatic organisms

2. Object and summary of class

In the aquatic organisms, not only genetics in individual level but also population level is important. Because, the position of conservation in genetic resources has very important in this subject. In this class, the basic theory of inheritance in individual level, population level, the basic theory of genetic improvement and the conservation of genetic resources will be explained and discussed.

3. Keywords

4. Goal of study

1) Understand the basic theory of genetics in both of individual and population level
2) Understand the theory of the application methods of genetics for the genetic improvement
3) Understand the basic theory of genetics for the conservation of genetic resources.

5. Contents and progress schedule of class

Basic theory of inheritance
1) Basic theory and various mode of inheritance
2) Genetic variations
3) Linkage and recombination
4) Basic theory of genetics in population
5) Genetic drift and inbreeding
6) Natural selection
7) Population structure and genetic diversity of population
8) Genetic markers for the analysis of populations and quantitative traits

Basic theory of genetic improvement
9) Basic theory of inheritance in quantitative traits
10) Heritability and breeding value
11) Basic theory of selection
12) Heterosis and hybrid vigor
13) Genetic improvement by recombinant DNA

6. Preparation

7. Record end evaluation method

Total results are evaluated by the final examination, reports and the results of the problems set at a lecture at each time.

8. Textbook and references

- Genetics for fish hatchery managers, D. Tave, An AVI Books, New York, 1992

9. Self study

10. In addition

The office will be opened from 10:00 AM to 05:00 PM to receive the question. The question is also received by e-mail, masamichi.nakajima.b6@tohoku.ac.jp
1. Class subject
Practical field and experimental training for marine biodiversity.

2. Object and summary of class
To understand importance of marine biodiversity.
(1) Observation and analysis of marine biodiversity.
(2) Analysis of genetic diversity in marine organisms.
(3) Comparative observation of early development and morphogenesis of marine invertebrates.

3. Keywords
marine ecosystem, biodiversity, genetic diversity, early development, morphogenesis

4. Goal of study
Students will be able to understand the importance for biodiversity in marine ecosystems through the observation of species/genetic diversity and development of marine organisms.

5. Contents and progress schedule of class

Five days in 4th semester (August)
- Days 1-2: Quantitative and qualitative of marine biodiversity.
- Days 3-4: Observation of early development of marine invertebrates.
- Day 5: Presentation

Five days in 6th semester (August)
- Days 3-4: Observation of morphogenesis of marine invertebrates.
- Days 5: Presentation

6. Preparation
For more information, note our announcement on June or July.

7. Record end evaluation method
- Attendance: 40%
- Activeness: 20%
- Report: 40%

8. Textbook and references
Preparing textbook

9. Self study
None

10. In addition
Contact e-mail address:
- Ikeda: minoru.ikeda.a6@tohoku.ac.jp
- Yorisue: takefumi.yorisue.d5@tohoku.ac.jp
| Subject | Fishery Science Practice I-II
(学生実験Ⅰ・Ⅱ) | Day/Period | Mon.-Wed. & Fri./3rd & 4th | Object | AMB |
|-------------------------|--------------------------|--------------------------|---------------------------------|--------|-----------|
| Instructor (Post) | Professors from all the fields of AMB
(Prof. & Assoc. Prof.) | Categories | Specialized Subjects | Preferable Participants | 2nd & 3rd-year students |
| Position | Faculty of Agriculture (Graduate School of Agricultural Science) | Credits | 10 |
| Subject Numbering | AAL-APS308J/AAL-APS309J | Language Used in Course | Japanese |

1. Class subject

Morphology, function and components of aquatic organisms, Analysis of substances in environment

2. Object and summary of class

The purpose of the course is to let participants understand the taxonomy, constitution of body, function of aquatic organisms, the way to use analytical instruments and analysis of experimental data.

3. Keywords

Experiments, anatomy, microscopy, chemical analysis, statistics

4. Goal of study

Students will
- have basic knowledge for anatomical structure and components of aquatic organisms and analysis of environment.
- have deeper understanding of aquatic organisms and marine environment.

5. Contents and progress schedule of class

The course will be conducted by AMB laboratories.
- Anatomy of invertebrate and teleost
- Molecular biology and genetics
- Taxonomy of aquatic organisms
- Histology
- Physiology
- Analytical chemistry of environment and organisms
- Microbiology
- Ecology
- Statistic analysis

6. Preparation

Understand the materials and methods to be used in each class in advance.

7. Record end evaluation method

Students should attend every experiments and absence is not acceptable for any reason. Students should submit report of each by the deadline suggested in each experiment. The academic achievement will be evaluated by attendance and submitted report through entire period.

8. Textbook and references

Text for the course will be provided and students may be recommended to prepare well.

9. Self study

Refer to related books in the library for writing reports.

10. In addition

Students may visit the instructor of each experiment anytime.
1. Class subject

Components of aquatic organisms, analysis of substances in environment

2. Object and summary of class

The purpose of the course is for students to understand the body components of organisms and the procedures to extract and analyze chemical components in the environment.

3. Keywords

Experiments, analysis, biogenic substances, chemical components

4. Goal of study

Students will
- have basic knowledge of biogenic substances from aquatic organisms and analysis of the environment.
- have knowledge of experimental procedures.

5. Contents and progress schedule of class

The course will be conducted by AMB laboratories. Anatomy of fin fish
- Extraction and analysis of genetic material
- Analysis of components of seawater
- Evaluation of taste components
- Extraction and analysis of body components

6. Preparation

Understand the materials and methods to be used in each class in advance.

7. Record end evaluation method

Students should attend every experiment and absence is not acceptable for any reason. Students should submit a report on each theme by the required deadline. Academic achievement will be evaluated by attendance and grading of all reports submitted.

8. Textbook and references

Texts for the course will be provided.

9. Self study

Refer to related books in the library for writing reports. Prepare well before attending each practical.

10. In addition

Students may visit the instructor of each experiment any time.
Basic Biology, Practice (基礎生物学実験)

Subject: Basic Biology, Practice
Instructor (Post): T. Suzuki et al. (Prof.)
Position: Faculty of Agriculture (Graduate School of Agricultural Science)
Subject Numbering: AAL-APS311J

1. Class subject
 Body plan and function of aquatic organisms

2. Object and summary of class
 The purpose of the course is to let students understand body plan and function of aquatic organisms studying on morphology, genetics, cell biology, physiology and statistic analysis.

3. Keywords
 Morphology, Genetics, Taxonomy, Cellular tissue

4. Goal of study
 Students will
 - have knowledge of basic biology
 - have knowledge of experimental procedure

5. Contents and progress schedule of class
 The course will be conducted by AMB laboratories.
 - Anatomy of fin fish
 - Genetics and analysis of polymorphism
 - Cell biology of aquatic plant
 - Histology of marine animals

6. Preparation
 Read textbook before the class and understand an outline of experimental procedure in advance.

7. Record and evaluation method
 Students should attend every experiments and absence is not acceptable for any reason. Students should submit report of each by the deadline suggested in each experiment. The academic achievement will be evaluated by attendance and submitted report through entire period.

8. Textbook and references
 Text for the course will be provided and students may be recommended to prepare well.

9. Self study
 Review the results of the experiment and summarize it in the report.

10. In addition
 Students may visit the instructor of each experiment anytime.
1. Class subject

Underlying concept of aquaculture and overview of projects of representative aquaculture

2. Object and summary of class

Restoration of natural fishery resources and growth of fish products is an urgent issue to be resolved in aquaculture. The purpose of this class is to let students understand the concept of aquaculture and specific aquaculture projects.

3. Keywords

Teleost, Crustacea, Bivalve, Natural seed, Artificial seed

4. Goal of study

Students will
- cognize the importance of aquaculture for restoration and growth of fishery product.
- have knowledge of specific issues on aquaculture.

5. Contents and progress schedule of class

- Concept of aquaculture 1
- Concept of aquaculture 2
- Salmon 1 (life cycle)
- Salmon 2 (artificial seed production and release)
- Yellowtail 1 (life cycle)
- Yellowtail 2 (natural seed collection and farming)
- Flounder 1 (life cycle)
- Flounder 2 (artificial seed production and release)
- Kuruma Prawn 1 (life cycle)
- Kuruma Prawn 2 (artificial seed production and release)
- Scallop 1 (life cycle)
- Scallop 2 (natural seed collection and farming)
- Oyster (natural seed collection and farming)
- Others (Pearl oyster and Bluefin tuna cultivation)
- Chromosome manipulation and sex manipulation

6. Preparation

Read textbook before the class and understand an outline of life cycle and aquaculture process of each animal in advance.

7. Record end evaluation method

The academic achievement will be evaluated by report assigned in each lecture.

8. Textbook and references

9. Self study

Read again textbook based on the information learned at the class and review the knowledge of aquaculture.

10. In addition

Students may visit the office or contact via Email (makoto.osada.a8@tohoku.ac.jp) anytime.

URL of the lab “Aquacultural Biology”; http://www.agri.tohoku.ac.jp/zoshoku/english.html
Subject: Fisheries Biology and Ecology (水産資源生態学)

<table>
<thead>
<tr>
<th>Instructor (Post)</th>
<th>Categories</th>
<th>Object</th>
<th>Sem/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Katayama (Prof.)</td>
<td>Specialized Subjects</td>
<td>Preferable Participants</td>
<td>3rd-year students</td>
</tr>
</tbody>
</table>

Position
Faculty of Agriculture (Graduate School of Agricultural Science)

Subject Numbering
ABS-APS342E

Day/Period
Tues./1st

Object
AMB

Credits
2

Semester
6

Language Used in Course
English

1. **Class subject**
 - Life history of marine resources, biology, population dynamics and methodology of population analysis.

2. **Object and summary of class**
 - Characteristics of marine organisms are tempo-spacio fluctuations and reproduction. Especially marine resources are affected by not only environmental condition but also fishing pressure. In this lecture, after short review of world and Japanese fisheries production, life history traits and fluctuating patterns of populations are explained. Methodology of stock assessment and population are also mentioned for the fisheries management.

3. **Keywords**
 - Fish biology, life history strategy, Fisheries, Population analysis

4. **Goal of study**
 - To understand the biological characteristics of marine resources and to learn theoretical and technical methods for marine biology, stock assessment and fisheries management.

5. **Contents and progress schedule of class**
 1. Status of world and Japanese fisheries production
 2. Stock identification and population structure
 3-4. Ichthyology (External and internal morphology)
 5-8. Life history (Age and growth, life cycle, migration, maturing and spawning, early life history, mortality and survival)
 9. Patterns of population dynamics
 10-11. Data analysis and stock assessment
 12-13. Surplus yield model and yield per recruit model
 14. Cohort analysis
 15. Fisheries management

6. **Preparation**
 - There are no particular prerequisites for this course. Basic biology capabilities will ease the learning.

7. **Record end evaluation method**
 - Score of an end-of-term exam and attendance

8. **Textbook and references**
 - Marine Fisheries Ecology, Jennings et al., 2001 Wiley-Blackwell
 - Fishes: An Introduction to Ichthyology, Moyle and Cech, 2004 Pearson Prentice Hall
 - Fisheries Biology, Assessment and Management, M. King, 2007 Wiley-Blackwell

9. **Self study**
 - Please do not lose teaching documents and your class note for the final exam.

10. **In addition**
 - Contact: skata@tohoku.ac.jp
1. Class subject

Interaction between herbivores and marine plants in coastal rocky bottoms

2. Object and summary of class

 This course provides reproduction, grazing activity, population dynamics of herbivores associated with Kelp beds (forests). Students will learn marine forestation technology, and management and enhancement means of sea urchin and abalone stocks associated with their ecological characteristics.

3. Keywords

 Kelp forest, Sea urchin, Barren, Grazing, Population dynamics, Production, Rocky subtidal ecosystem, Phase shift Global warming

4. Goal of study

 The goal is to understand how sea urchin and abalone maintain their population associated with seaweeds beds and how enhancement means of seaweed, sea urchin and abalone were developed on the basis of biology and ecology.

5. Contents and progress schedule of class

 1. Structure and function of marine forest (Oct. 2, 9)
 2. Reproduction of herbivore (Oct.16)
 3. Growth and gonad production of herbivore (Oct. 23)
 4. Grazing activity (Oct. 30, Nov. 6)
 5. Chemical defense of seaweeds (Nov. 13)
 6. Mechanisms of population maintenance and fluctuation (Nov. 20)
 7. Effects of sea urchin grazing on rocky subtidal communities (Nov. 27, Dec. 4)
 8. Restoration of “barren” (Dec. 11)
 9. Effect of ocean warming and acidification on rocky subtidal communities (Dec. 18, 25)
 10. Development of enhancement means of sea urchin and abalone (Jan. 8, 15)

6. Preparation

7. Record end evaluation method

 Examination, report and attendance

8. Textbook and references

 Reference texts:

9. Self study

 Review is required.

10. In addition

 Questions, comments, and requests are accepted. Send them to Professor Agatsuma: yukio.agatsuma.c7@tohoku.ac.jp
 Office hour: Tuesday 16:00–18:00 in Professor room of Laboratory of Marine Plant Ecology
Subject

<table>
<thead>
<tr>
<th>Subject Numbering</th>
<th>Marine Biochemistry (水産化学)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Period</td>
<td>AMB</td>
</tr>
<tr>
<td>Object</td>
<td>AMB</td>
</tr>
</tbody>
</table>

Instructor

<table>
<thead>
<tr>
<th>Instructor (Post)</th>
<th>Yoshihiro OCHIAI (Prof.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
<td>Specialized Subjects</td>
</tr>
<tr>
<td>Preferable</td>
<td>Participants</td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Semester</td>
<td>5</td>
</tr>
</tbody>
</table>

Position

<table>
<thead>
<tr>
<th>Faculty of Agriculture (Graduate School of Agricultural Science)</th>
</tr>
</thead>
</table>

Subject Numbering

<table>
<thead>
<tr>
<th>ABS-APS244E</th>
</tr>
</thead>
</table>

Language Used in Course

<table>
<thead>
<tr>
<th>English</th>
</tr>
</thead>
</table>

1. **Class subject**

Biochemical characterization of aquatic organisms and seafood

2. **Object and summary of class**

The organisms inhabiting in the ocean have unique components to adapt to and survive in the environment. To utilize effectively the limited bioresources, it is essential to understand the chemical components of fish and other marine organisms and their postmortem changes. While marine organisms show beneficial effects on human health, some of them possess toxic substances and some microorganisms and parasites are responsible for food poisoning. To maximize the benefits of seafood, marine organisms should be thoroughly understood.

The class deals with the biochemical, nutritional and functional properties of the components in the organisms and the mechanisms of postharvest deterioration and health improvement. The other related topics will also be introduced.

3. **Keywords**

Seafood, chemical components, nutrients, physiological functions, food processing, effective utilization

4. **Goal of study**

To get the sufficient knowledge about the characteristics of marine organisms for biochemical viewpoint.

To understand the beneficial effects and hazardous aspects of seafood as well as the theories for preservation

5. **Contents and progress schedule of class**

1: Biochemical characteristics of marine organisms
2: Proximate composition of seafood
3: Proteins
4: Lipids
5: Carbohydrates
6: Vitamins
7: Minerals
8: Extractives
9: Color and flavor
10: Physical properties
11: Functional substances
12: Natural toxins and food poisoning
13: Freshness and shelf life of fish and shellfish
14: Postmortem changes in muscle
15: Report writing

6. **Preparation**

Collect the related information in the library and through the web

7. **Record end evaluation method**

Based on the final report (50%), homework (20%) and class attendance (30%).

8. **Textbook and references**

- Flick & Martin: Advances in seafood biochemistry - composition and quality, Technomic Pub., 1992

9. **Self study**

Read related papers published in recent years.

10. **In addition**

Handouts will be provided for each class.

Questions are welcome. Please feel free to step in during the office hours (after each class).
1. Class subject

Review marine environment and adaptive ecology of pelagic organisms that evolved in the oceans.

2. Object and summary of class

Deepen understanding of the production of plankton that live in vast and deep ocean environment based on physical and chemical characteristics of the ocean.

3. Keywords

physics, chemistry, biology, ecology, productivity, global warming

4. Goal of study

Understand pelagic environment of the oceans and adaptation of its inhabitants, regional differences, and biological oceanographic basis that support fish production

5. Contents and progress schedule of class

1, 2: History of Biological Oceanography
3-5: Physical environment
6-8: Chemical environment
9: Primary production in the oceans
10: Secondary production in the oceans
11: Relationship between phytoplankton and zooplankton
12-14: Marine plankton and global environment
15: Current topics on Biological Oceanography

6. Preparation

Acquire basic knowledge on oceans and organisms living in them.

7. Record end evaluation method

short tests and term-end test

8. Textbook and references

9. Self study

Understand cause and effect of phenomena taught in class.

10. In addition

Office hours are from 11:00 to 16:00 on Wednesdays.
Agricultural Research and Administration Facility, Room No. S305
mail address: yoshinari.endo.e2@tohoku.ac.jp
1. Class subject
 1. Techniques of molecular biology
 2. Developmental engineering in fish
 3. Marine biotechnology for aquaculture
 4. Computer practice

2. Object and summary of class
 In this class, students will learn about developmental biology of fish, molecular engineering in fish, and bioinformatics using computer and web sites.

3. Keywords
 Fish development, genome, genome editing, positional cloning, bioinformatics

4. Goal of study
 Students will understand the fundamental issues of genetic engineering and genomics in fish, and bioinformatics necessary for future researches in the fields of marine biotechnology.

5. Contents and progress schedule of class
 1-2: Embryonic development in fish
 3-4: Reverse genetics (Knockout fish, CRISPR/Cas9)
 5-6: Forward genetics (Mutant library, Positional cloning)
 7: Other basic techniques essential for fish biotechnology
 8: Fish genomes
 9-12: Practical training using computer (BLAST search, Multiple alignment, Phylogenetic tree, Ensembl, PubMed)
 13-14: Larval and metamorphic development
 15: Transgenic fish

6. Preparation
 Since texts for next week are passed, students should read them before class.

7. Record end evaluation method
 Attendance and test

8. Textbook and references
 Reference Books:
 Gene Cloning & DNA Analysis; An Introduction. By Brown TA. Willey-Blackwell
 Recombinant DNA; Genes and Genomics – A Short Course. Watson JD. W. H. Freeman and Company
 Developmental Biology. Gilbert SF. Sinauer Associates

9. Self study
 Students are recommended to read above textbooks.

10. In addition
 1. Office hour: Questions are accepted after class, or by e-mail. Students can also visit my office for questions and discussion.
 3. E-mail address: toru.suzuki.a8@tohoku.ac.jp
1. Class subject
Conservation and sustainable yield of marine bio-resources

2. Object and summary of class

A variety of marine bio-resources have inhabited in the coastal areas. These are important food resources and also reproductive resources. Considering a conservation and sustainable yield of them, though ecological and physiological studies are important, genetic studies should be quite important for future.

In the present lecture, I will explain the importance of applied genetics for future managements of marine bio-resources by using actual scientific research in my laboratory.

3. Keywords
 - marine organisms, genetics and breeding science, population structure, conservation, aquaculture

4. Goal of study
 - Understanding the present condition of marine production in coastal area of Japan. Also, through the lecture, ability of consideration and problem solving are required.

5. Contents and progress schedule of class

1st to third: the history of fisheries and how to change the concept of marine production in Japan
4th to 5th: Basic of genetics for production and conservation of marine resources
6th to 14th: Actual examples of genetic studies on aquatic resources for conservation and production.
 - Example: genetic studies of crucian carp (named Tetsugyo), freshwater shrimp (*Palaemon pausidens*), Pacific abalone (*Haliotis discus hannai*), and Sea cucumber (*Palastichopus japonica*)
15Tth: Future aspects for conservation and production of marine bio-resources.

6. Preparation
 - No need but you should survey the technical terms in the lecture and write on your note book.

7. Record end evaluation method
 - Examination and Reports

8. Textbook and references
 - Directing on the lecture

9. Self study

10. In addition
 - When you have a question, please contact me by e-mail.
 - e-mail address: minoru.ikeda.a6@tohoku.ac.jp
1. Class subject

On the invertebrate animals distributed in aquatic environments, basic physiology, especially immunology and feeding behavior, digestive and circulatory systems and life history will be outlined.

2. Object and summary of class

To learn the innate immune systems in marine invertebrates involved in basic innate immune systems, molecular and cellular host defense and apoptosis of immune cells.

To learn trained immunity of aquatic invertebrates based on host-parasite coevolution.

To understand structures of digestive organs, and feeding and digestive mechanisms of bivalve mollusks.

To understand structures of heart and vessels, and circulatory system of bivalve mollusks.

3. Keywords

Aquatic invertebrates, Innate immunity, Host defense, Apoptosis, Digestive organs, Circulatory systems

4. Goal of study

Understanding the basic sciences in relation to immunology, feeding behavior and life history of aquatic invertebrates.

5. Contents and progress schedule of class

1st: Guidance
2nd: Feeding mechanisms of bivalve mollusks 1
3rd: Feeding mechanisms of bivalve mollusks 2
4th: Feeding mechanisms of bivalve mollusks 3
5th: Digestion and nutrition in bivalve mollusks 1
6th: Digestion and nutrition in bivalve mollusks 2
7th: Circulatory system of bivalve mollusks 1
8th: Circulatory system of bivalve mollusks 2
9th: A thorough review and first examination (Exam 1) of the class in the first half
10th: Innate Immunity in Invertebrates 1: general theory
11th: Innate Immunity in Invertebrates 2: morphology and function of hemocytes
12th: Innate Immunity in Invertebrates 3: pathogen recognition receptors (PRRs) and PAMPs
13th: Innate Immunity in Invertebrates 4: host defense in mollusks
14th: Innate Immunity in Invertebrates 5: host defense in crustaceans
15th: Innate Immunity in Invertebrates 6: trained immunity of mollusks: model for host-parasite coevolution
16th: A thorough review and second examination (Exam 2) of the class in the second half

6. Preparation

You should study basic biology, especially immunology and molluscan biology, prior to class studying.

7. Record end evaluation method

Attendance point: 300 points (20 points per one lecture time; 15 times)
Examination point: 200 points (100 points per one exam)
AA=90-100%; A=80-89%; B=70-79%; C=60-69%; D=below 60%

8. Textbook and references

9. Self study

You can study yourself to use textbooks (shown as above) getting for general knowledge of this class. These textbooks are owned by the library of Tohoku University. You can use these one.

10. In addition

E-mail: waradica@tohoku.ac.jp
Office hour: 13:00-15:00 of Tuesday and Wednesday.
Concepts and methods for the study of marine plant life

2. Object and summary of class
 Marine algae are the major primary producers at the marine coastal areas, but most of us know little about them. Object of the class is to understand the concepts and methods for the study of marine plants such as algae and seagrasses. In this series of lectures, firstly, we will try to understand the basic characteristics of marine plants. Second, the patterns in the geographical and vertical distributions of marine algae will be discussed. Next, we will overview the studies on the population and community aspects of marine plants. Analytical methods of population dynamics and the details of plant-animal interactions will also be discussed. In addition, some topics in seaweed mariculture and marine pollution will be shown. Finally, monitoring methods of marine plant communities and the actual application of them will be introduced.

3. Keywords
 seaweed, kelp, *Sargassum*, plant-animal interactions, grazers, herbivores

4. Goal of study
 For students to be able to understand the basic ideas and methods for the study of marine plants.

5. Contents and progress schedule of class
 (1) At the beginning: all about WAKAME: *Undaria pinnatifida*
 (2) Geographical distribution of marine algae
 (3) Vertical distribution of marine algae: intertidal zone
 (4) Vertical distribution of marine algae: subtidal zone
 (5) Primary production of coastal marine plants-1
 (6) Primary production of coastal marine plants-2
 (7) Population analysis of marine plants-1
 (8) Population analysis of marine plants-2
 (9) Dispersal ability of marine plants
 (10) Plant-animal interactions in benthic algae communities
 (11) Mariculture
 (12) Pollution
 (13) Monitoring survey of marine plant communities
 (14) Final examination

6. Preparation

7. Record and evaluation method
 Attendance rates and test scores will be recorded and evaluated.

8. Textbook and references
 Handouts will be available at the beginning of each lecture.

9. Self study

10. In addition
 Office phone number: 022-757-4152
 Mail address: masakazu.aoki.e6@tohoku.ac.jp
1. Class subject

The biochemical characteristics of marine resources and the methods for their effective utilization

2. Object and summary of class

We will learn the biochemical characteristics of marine organisms as foodstuffs. We will understand the principle of production of seafood, and their processing methods.

We will have an accurate knowledge of the quality control of marine foodstuffs and seafood. So we will understand the role of marine organisms as resources for food.

And we will also learn the function of seafood for human health and the characteristics of seafood for medicinal and industrial materials.

3. Keywords

Food preservation technique, Freezing and thawing technique, Postmortem change of fish,

4. Goal of study

We will understand the principals and the methods of food processing, and the controls of food qualities. We will obtain the knowledge for the effective utilization of marine resources.

5. Contents and progress schedule of class

1 Marine resources for food
2 Characteristics marine processing foods
3 Processing principals of typical seafood
4 Food poisonings related to seafood
5 Function of marine lipids
6 Biochemical substances from marine organisms for medicinal and industrial materials

6. Preparation

It is desirable that you take a lecture on Marine Biochemistry

7. Record end evaluation method

Our final grade will be calculated according to the following process: Mid-term reports and examination (40%), term-end examination (60%), and a fraction of in-class contribution.

8. Textbook and references

9. Self study

10. In addition
1. Class subject: **Seafood Management**.

2. Object and summary of class: Understand the features of seafood quality and its management with regard to maintaining the safety of seafood.

3. Keywords: Hygiene, HACCP, diseases, food safety, problems with seafood, legal and international issues.

4. Goal of study: Explain the problems of management methods for quality and hygiene management of seafood at each stage, from harvest to the consumer's table. Describe the features of seafood quality. State the methods of maintaining quality in terms of safety. State relevant regulations and public laws for maintaining seafood quality and safety. Describe the essential points of quality management under the HACCP system.

5. Contents and progress schedule of class:
 1. Introduction. Seafood and seafood processing.
 2. Chemistry: components of seafood affecting colour, taste and smell.
 3. Harmful chemical substances affecting food safety (incl. histamine, etc.); harmful physical substances (foreign objects).
 4. Harmful biological substances (1) Parasites.
 5. Harmful biological substances (2) Bacterial & fungal infections, listeriosis, etc. [Report]
 7. Hygiene principles.
 10. Basic seafood handling: visit to Ishinomaki Fish Landing and Market. [Report].
 12. Practice of seafood management: visit to Sendai City Fish Market. [Report].
 13. Seafood management (3): The HACCP system.
 14. Practice of HACCP: visit to a food processing company. [Report].

6. Preparation: Review the previous lecture before attending the next.

7. Record end evaluation method: In-depth reports (90%). Attendance and attention during lectures (10%).

8. Textbook and references:

9. Self study: The reports require careful and detailed writing, and they will be assessed in particular for their scientific approach. You must write in the context of demonstrating clearly what you have learned during lectures.

10. In addition Landing and first sales point (visit to a fishing port). Management at the resource level.
1. Class subject
Systematics and biology of marine plankton

2. Object and summary of class

An introduction to systematics, physiology, and ecology of marine plankton

3. Keywords

Diatom, flagellate, ciliate, jelly fish, copepod, krill, food chain, microbial food web, vertical migration

4. Goal of study

Understanding structure and role of plankton community in marine ecosystem

5. Contents and progress schedule of class

 - Definition of plankton (1)
 - Historical development of planktology (1)
 - Marine environmental characteristics (2)
 - Systematics and biology of marine phytoplankton (3)
 - Systematics and biology of marine zooplankton (4)
 - Characteristics of primary production in the ocean (1)
 - Characteristics of secondary production in the ocean (1)
 - Vertical migration in zooplankton and its ecological role (1)
 - Current topics in marine plankton (1)

6. Preparation

Basic knowledge of biology and ecology, basic understanding of marine ecosystem

7. Record and evaluation method

Presence/absence evaluation & examination

8. Textbook and references

 Biological Oceanography: An Introduction, second edition
 Lalli and Parsons, 1997, ELSEVIER Butterworth-Heinemann

9. Self study

Fisheries Science

10. In addition

Contact email address: wsokoshi@tohoku.ac.jp
1. Class subject
 Elementary knowledge for diversity of aquatic organisms based on genetics, evolutionary biology, ecology.

2. Object and summary of class
 This course is intended to provide a framework for the study of aquatic organisms, the foundation upon which all other courses in AMB will build. Using evolution as central organizing principle, we will examine the material and processes of inheritance, the forces that drive biological diversification, and the patterns and phenomena that result from these processes.

3. Keywords
 genetics, evolution, ecology, marine biodiversity, diversification, conservation

4. Goal of study
 Students will be able to gain the synthetic concept for conservation and utilization of aquatic organisms based on genetics, evolutionary biology, ecology and physiology.

5. Contents and progress schedule of class
 1. Introduction
 2. Genetics (I)
 3. Genetics (II)
 4. Genetics (III)
 5. Genetics (VI)
 6. Evolution (I)
 7. Evolution (II)
 8. Evolution (III)
 9. Evolution (VI)
 10. Evolution (V)
 11. Form and Function (I)
 12. Form and Function (II)
 13. Interaction with the Environment (I)
 14. Interaction with the Environment (II)
 15. Interaction with the Environment (III)

6. Preparation
 None

7. Record end evaluation method
 Attendance: 10%
 Activeness: 10%
 Final Exam: 80%

8. Textbook and references
 Preparing textbook

9. Self study
 None

10. In addition
 Contact e-mail address:
 Ikeda: minoru.ikeda.a6@tohoku.ac.jp
1. Class subject

Introduction to Fisheries Science

2. Object and summary of class

This course provides an overview of the fishery science. Students will learn the fishery science on the basis of marine biology in a broad sense from molecules to ecosystems.

3. Keywords

Fisheries science, basics & outlines

4. Goal of study

The goal is to understand the fishery science basically from ecology, physiology, genetics, molecular biology and evolution, and to appreciate the fishery science as the applied marine biology.

5. Contents and progress schedule of class

Topics on marine ecology and oceanography

Lab Marine Plant Ecology
Oct. 5 ---- “Introduction to rocky subtidal communities” (Y. Agatsuma)
Oct. 12 ---- “The ecology of floating seaweeds” (M. Aoki)

Lab Fisheries Biology & Ecology
Oct. 19 ---- “How to know the fish age” (S. Katayama)
Dec. 7 ---- “How to know the fish migration” (S. Katayama)

Lab Biological Oceanography
Oct. 26 ----- “Marine environment for marine organisms” (W. Sato-Okoshi)
Nov. 16 ---- “Plankton and benthos in the ocean” (W. Sato-Okoshi)

Topics on biology and biochemistry of aquatic organisms

Lab Aquacultural Biology
Nov. 23 ---- “Immunity in marine invertebrates” (K. Takahashi)
Nov. 30 ---- “Manipulation of reproduction in bivalve mollusks” (M. Osada)

Lab Marine Biochemistry
Nov. 9 ----- “Food chemistry of fish and shellfish” (Y. Ochiai)
Dec. 14 ----- “Function of marine lipids” (T. Yamaguchi)

Topics on fish genetics and biotechnology

Lab Marine Life Science & Genetics
Dec. 21 ----- “Fish development and biotechnology” (T. Suzuki)
Jan. 4 ------ “Genetic conservation and sustainable use of resources in aquatic organisms“ (M. Nakajima)

Lab Integrative Aquatic Biology
Jan. 11 ----- “Conservation genetics for fishery resources -1” (M. Ikeda)
Jan. 18 ----- “Conservation genetics for fishery resources -2” (M. Ikeda)

6. Preparation

Refer to the recent topics in each field.

7. Record end evaluation method

Attendance and report. The report should be directly submitted to the instructor of each lecture by the next lecture.

8. Textbook and references

No textbook. Reference books will be introduced.

9. Self study

Summarize the content of each class promptly.

10. In addition

Questions, comments, and requests accepted.
Send them to the representative instructor, Prof. Suzuki: toru.suzuki.a8@tohoku.ac.jp
1. Class subject

Practical training at the point of fishery production and research

2. Object and summary of class

This course provides the tours at the point of fishery production and research. Students will learn fisheries science practically.

3. Keywords

Field trip, investigative tour

4. Goal of study

The goal is to increase awareness of students to learn fisheries science.

5. Contents and progress schedule of class

This course provides the practical tours as below:

1. Research institute of fishery
2. Marine food company
3. Fish market
4. Aquarium
 etc.

6. Preparation

Collect information before starting each tour.

7. Record and evaluation method

Attendance and report. The report should be submitted by the designated deadlines.

8. Textbook and references

No textbook. Reference books will be introduced.

9. Self study

Refer to related books in the library after each tour.

10. In addition

Questions, comments, and requests accepted. Send them to the representative instructor, Prof. Suzuki: toru.suzuki.a8@tohoku.ac.jp
1. Class subject: Marine Biology: **Taxonomy and biodiversity of marine plants and animals.**

2. Object and summary of class: Survey the different types of organisms in the sea, providing a basic understanding of marine biodiversity, emphasizing those organisms exploited by Man.

3. Keywords: Marine biodiversity, plankton, Ecdysozoa, Lophotrochozoa, Phylogenetics, Fisheries species, Identification

4. Goal of study: Describe the main types of living organisms and, for animals, the basic types of body plan for, and distinguishing features of, the major groups of marine life, particularly those exploited for fisheries and aquaculture.

5. Contents and progress schedule of class
 Each lecture will provide basic information about the different groups of marine organisms, relating form and function. Students are expected to build up a file of comprehensive notes on the special features of each group and the characteristics of specific organisms, ready to supplement practical work on surveying and identifying locally available species. Groups not covered during this course will be dealt with in the courses Life & Nature, Planktonology and in Basic Seminars.
 (1). Introduction. Marine organisms and the food web; producers, consumers, detritivores; the major groups & their spatial and bathymetric distributions; solar-dependent and solar-independent (hydrothermal) systems.
 (2). Plants. Phytoplankton: major groups & their characteristics. Macrophytic seaweeds.
 (6). Crustacea (3) Parasitic forms.
 (8). Mollusca (1) Monoplacophora, Polyplacophora, Scaphopoda, Bivalvia.
 (9). Mollusca (2) Cephalopoda.
 (10). Echinodermata.
 (11). Chaetognatha, Hemichordata, Urochordata, Cephalochordata.
 (15). Review and discussion. Final submission of reports and notes file.

6. Preparation: Read what you can about different kinds of marine life.

7. Record and evaluation method: Reports (90%). Notes file (10%).

9. Self study: The course is very intensive. In order to learn efficiently, it is important to review each lecture in the evening when you return home, otherwise you will forget what you have learned. You are required to write nine reports. These must be handed in on schedule, otherwise you may not pass the course.

10. In addition
 You do not need to buy the textbooks. You will have access to these during the course.
1. Class subject : Resource and Environmental Economics
2. Object and summary of class This class object is to study the concepts of Resource and Environmental Economics. Ten Professors, Associate Professors and Assistant Professors will give the lectures weekly.
3. Keywords agricultural economics, remote sensing, food business, environmental conservation, agricultural ethics
4. Goal of study The goal of this class is to obtain the background knowledge concerning Resource and Environmental Economics as well as the basic principles of Agricultural Economics, Farm Management Science, Remote Sensing and Life Cycle Assessment of Goods.
5. Contents and progress schedule of class
 - Guidance (Head of department)
 An annual report of food, agriculture and rural village in Japan (Head of department)
 An annual report of Japanese MAFF shows the outline of food, agriculture and rural village in Japan.
 - Food & Agriculture for Human Society (Professor Katsuhito FUYUKI)
 Poverty and socio-political unrest have deteriorated human security in developing countries. In this class, I will raise human security issues, especially food security and rural development for poverty alleviation.
 - Agricultural policy and environmental issues (Associate Professor Keiichi ISHI)
 This lecture will examine trends of agricultural policy integrating environmental problems.
 - Recent Situation of Japanese Agriculture and Global Food Production (Head of department)
 World food supply and demand has changed dramatically in 21st Century. We explain its causes like emerging economies’ economic growth and expanding use of agricultural products for biofuels, and its implication. And also we study agricultural structural problems of Japan like too small farming.
 - Trends of Japanese food consumption and consumer’s behavior (Professor Fusao ITO)
 In this class, recent characteristics of change in Japanese food consumption will be showed. Students will be able to learn some problems of Japanese future food market.
 - Environmental friendly oriented agriculture in Japan (Assistant Professor Asato MIZUKI)
 This lecture will cover an outline of environmental friendly agriculture in Japan and provide students concepts of economic evaluation and environmental assessment concerning it.
 - Recent Situation of Japanese Agriculture and Agribusiness (Professor Katsuhito FUYUKI)
 Farmer’s income comprises not only agricultural income. Japan's government should support promoting agriculture production-related businesses, such as the processing of farm products by farmers themselves. In this lecture, statistical data and other information of such businesses will be introduced
 - Spatial science in agriculture (Associate Professor Chinatsu YONEZAWA)
 Introduction of remote sensing and geographical information science (GIS) for agricultural application. Spatial thinking is an important and powerful agricultural problem solving tool.
 - Environmental impact assessment/environmental policy (Assistant Professor Michiaki OMURA)
 Life cycle assessment for agricultural activities
 - Agricultural ethics and environmental problems (Assistant Professor Shin OYAMADA)
 What should the relationship between agriculture and environment be? In this lecture students study the values of environment in the perspective of agricultural ethics.
 - What is environmental risks? (Professor Shinobu KITANI)
 The lecture shows you the difference between usual risks and environmental ones, and hope for students' consciousness of importance of environmental ethics.
 - Compatibility between conservation of nature and tourism (Associate Professor Tomoko IMOTO)
 With nature tourism, an appropriate balance between conservation and development can lead to economic growth. We explore possible ways to reduce the impact of tourism on nature using land-use classification and economic evaluation of nature.
 - Creation of the report (Head of department)
6. Preparation : nothing special
7. Record end evaluation method : Attendance to the lectures 50%, reports 50%
8. Textbook and references : Textbook and references will be introduced by each professor.
9. Self study : nothing special
10. In addition
1. Class subject: **Life science for agricultural and industrial applications**

2. Object and summary of class:
 This class object is to study fundamentals and recent progress in the research fields of molecular biology, cell biology, and physiology with plants, animals, and microbes as well as chemistry of biologically active natural products. More than ten Professors and Associate Professors will give lectures weekly to introduce their specific research fields.

3. Keywords: Biochemistry, Molecular Biology, Chemistry

4. Goal of study
 The goal of this class is to obtain the background knowledge concerning life science for agricultural and industrial applications as well as the basic principles of biochemistry and biotechnology.

5. Contents and progress schedule of class

 1) **Photosynthesis and mineral nutrients of higher plants**
 Students will learn about the photosynthetic oxygen evolution and mineral nutrition in higher plants.

 2) **Genome and epigenetics**
 This lecture deals with characteristics and functions of genome and epigenetics in eukaryotic cells, including molecular mechanisms of gene regulation and effects of food ingredients on epigenetics.

 3) **Enzymes in pathophysiology**
 This lecture will be presented to understand role of enzymes in health and disease, especially focusing on pathophysiology of Alzheimer’s disease.

 4) **Applied microbiology and fermentation technology**
 Microorganisms possess a wide variety of metabolism and thus are applied to bio-conversion in fermentation industry. This lecture will address both transport processes (substrate-uptake and product-efflux) catalyzed by solute transporters at cell membranes and intracellular metabolic pathways from the view points of bioenergetics in microorganisms. We will also lecture on the principles of protein production technology by bacteria.

 5) **Synthesis and application of bioactive natural products**
 This lecture will be presented to build basic understanding of synthetic organic chemistry in the filed of natural products chemistry and its roles in agricultural production, medicinal chemistry, and so on.

 6) **Molecular basis of nitrogen metabolism in rice**
 In this lecture, molecular mechanisms underlying the primary ammonium assimilation and the related processes in rice will be introduced.

 7) **Molecular eukaryotic microbiology**
 Eukaryotic microorganisms such as yeasts and filamentous fungi have been playing a pivotal role in academic science as well as in industrial production of valuable substances. This lecture will give an overview of molecular analysis of the important characteristics of yeast and koji-mold, which each has been used in sake fermentation for over a thousand years in Japan.

6. Preparation: Textbooks and references will be introduced by each instructor.

7. Record end evaluation method: Attendance to the lectures 50%, reports 50%

8. Textbook and references: Textbooks and references will be introduced by each instructor.

9. Self study: Textbooks and references will be introduced by each professor.

10. In addition
 Instructors: Profs. Amane MAKINO, Keietsu ABE, Shigefumi KUWAHARA, Mitsue MIYAO; Associate Profs. Hiroyuki ISHIDA, Masahiko HARATA, Eugene FUTAI, Jun KANEKO, Masaru ENOMOTO, Toshihiko HAYAKAWA, Takahiro SHINTANI
1. Subject

Current topics of Shellfish Physiology (先端海洋生物生理学)

2. Day/Period

Thur./1st

3. Object

AMB

4. Instructor (Post)

Kazue Nagasawa (Assistant Prof.)

5. Position

Faculty of Agriculture (Graduate School of Agricultural Science)

6. Subject Numbering

ABS-APS363E

7. Credits

1

8. Semester

7

9. Language Used in Course

English

1. Class subject

Recent research topics of aquatic animal physiology

2. Object and summary of class

Studies on aquatic animal physiology have contributed to not only fishery and food production, but also basic science including material and medical sciences. In this course, recent findings on aquatic animal physiology (mainly germ cell biology and neuroendocrinology) will be introduced.

3. Keywords

Germ cells, Reproduction, Neuropeptides, Fish, Shellfish

4. Goal of study

Learning recent research activities, scientific interests with impacts, and further application.

5. Contents and progress schedule of class

1. Introduction: What is "shellfish" and what is "physiology"?
2. Germ cell biology in aquatic animals 1 (germ cell classification/identification)
3. Germ cell biology in aquatic animals 2 (germ cell development)
4. Germ cell biology in aquatic animals 3 (germ cell transplantation)
5. Neuroendocrinology in aquatic animals 1 (Teleosts)
6. Neuroendocrinology in aquatic animals 2 (Marine invertebrates)
7. Examination

*Contents of the class may be changed without prior notification.

6. Preparation

No need.

7. Record end evaluation method

Evaluation is based on class attendance and the final examination.

8. Textbook and references

Handouts are used.

9. Self study

Read again handouts based on the information learned at the class and review the knowledge of physiological topics.

10. In addition

Students may visit the office or contact by Emailing (kazue.magasawa.d6@tohoku.ac.jp) anytime.
1. Class subject

Current topics of Fish Ecology

2. Object and summary of class

Objective: Understanding of structure and function of aquatic ecosystem and learning of new approach to be aware importance of biological production system.

Summary: This course will introduce current topics and practical studies on aquatic ecosystem through the use of new approach on ecology. It is important to learn ecosystem for sustainable utilization of fishery resources. They are members of biological production system in nature, and they have functional linkage among in various aquatic community and physicochemical environment. Based on stable isotope ecology, explanation of food web structure and environmental interactions will be provided. Finally, all students will discuss about consideration for relationship between human activity and ecosystem.

3. Keywords

Marine Ecosystem, Biological production, Environmental condition, Stable Isotopes

4. Goal of study

Understanding of structure and function of aquatic ecosystem through the use of new approach on ecology

5. Contents and progress schedule of class

1. Overview of special properties of global environment and meaning of fish ecology
2. Explanation of structure and function of aquatic ecosystem
3. Basic principle on stable isotope ecology
4. Introduction of current topics on food web analysis in waters through the use of new approach
5. Introduction of recent study on functional relation between aquatic organisms and environment
6. Discussion on consideration for relationship between human activity and ecosystem
7. Examination

6. Preparation

Reading of handouts given within class

7. Record end evaluation method

Attendance and examination

8. Textbook and references

Recent papers or handouts are given within class.

9. Self study

Thinking about current topics on Marine Ecology through textbooks and recent papers

10. In addition

E mail: kinuko.ito.c6@tohoku.ac.jp
1. Class subject

Marine Biochemistry & Seafood Science

2. Object and summary of class

This course will provide students with an understanding of the importance of biochemistry, physiology and food science in the field of fisheries sciences.

3. Keywords

Lipid; Protein; Bioactive Substance; Freshness; Quality Assessment; Stress; Transgenic Fish

4. Goal of study

To understand biochemical and physiological phenomena in fish and functional substances for our health from marine natural products and seafood.

5. Contents and progress schedule of class

1. Introduction “Current research topics in our lab at a glance”
2. Functional substances from marine products 1
3. Functional substances from marine products 2
4. Quality of seafood 1
5. Quality of seafood 2
6. Stress, growth, and nutrition in fish
7. Examination

6. Preparation

TBA (Preparation will be notified at the class)

7. Record end evaluation method

Class attendance, presentation, and examination

8. Textbook and references

References will be notified at the class.
(tentative) Dietary Supplements for the Health and Quality of Cultured Fish by Nakagawa, Sato and Gatlin, CABI, 2007.

9. Self-study

TBA (Self-study will be notified at the class)

10. In addition

Questions, comments, and requests will be accepted during office hours.
1. Class subject

I introduce some recent studies of genetics in aquatic organisms.

2. Object and summary of class

To discuss the future area of active research in marine ecology, I briefly introduce the recent topics of genetics in relation to larval dispersal, settlement, deep-sea organisms, etc.

3. Keywords

Genetic diversity, Larval ecology, Development, Aquaculture

4. Goal of study

Touching the current topics in the genetics of aquatic organisms, and understanding the role of these studies and new technics for the fisheries and aquaculture.

5. Contents and progress schedule of class

The topics will be changed by depending the hot topics of the year. I am going to lecture the topics about aquatic organisms as below.

- General introduction of this class
- Genetic analyses of larval dispersal, gene flow, and connectivity
- Genetic analyses in relation to larval settlement
- Ecology and evolution of larval dispersal in deep sea
- Larval ecology and human impact
- Sustainability and genetic diversity
- Genetic analyses in relation to biological invasions, recent topics on environmental DNA approach

6. Preparation

7. Record and evaluation method

I evaluate by the attendance rate and a report.

8. Textbook and references

9. Self study

10. In addition

If you have any question about my class, you can contact me by e-mail (takefumi.yorisue.d5@tohoku.ac.jp)
1. Class subject

Ecology of marine temperate reef communities.

2. Object and summary of class
Some current topics in ecology of marine temperate reef communities will be introduced.

3. Keywords
seaweed, kelp bed, herbivore, grazer, sea urchin, gastropod, plant-animal interactions, benthos, parasite, symbiosis,

4. Goal of study
To learn the factors affecting the complex networks in marine temperate reef communities.

5. Contents and progress schedule of class

1) Plant-animal interactions in marine benthos
2) Biology and ecology of sea urchins
3) Phase shift in rocky subtidal ecosystem
4) Biology and ecology of marine crustaceans
5) Parasitic and symbiotic relationships
6) Marine mesograzers
7) Examination

6. Preparation

7. Record end evaluation method
Attendance (50%) and examination (50%)

8. Textbook and references
Recent papers are given within class.

9. Self study

10. In addition
yukio.agatsuma.c7@tohoku.ac.jp
masakazu.aoki.e6@tohoku.ac.jp
Object and summary of class

In recent decades, fish became more and more used as excellent model system to investigate fundamental questions not only in aquaculture, but also in basic biology, medicine, and environmental science. This class will discuss why they are favored and how the model system developed, by showing examples of fish and other animals used as experimental model system.

Keywords

- Experimental model animal
- Genetics
- Developmental biology
- Non-conventional model animal

Goal of study

Students will understand the potential of fish and the reason why fish are used as an excellent experimental model in various fields. Some of learned strategies would be helpful for students to design their own research projects in any fields.

Contents and progress schedule of class

1. Introduction: Molecular biology as a tool for the research in biology and medicine
2. Advantage of nematode and fly as model system: development, genetics and mutagenesis
3. Advantage of fish as a model system: developmental genetics, genomics and mutagenesis
4. Advantage of frog and chicken as model system: development and micro-surgery
5. Advantage of mouse as a model system: development and stem cell technology
6. Advantage of using multiple model system: comparative approach and evolutionary biology
7. Experimental model system: past, present and future
8. Summary and final exam

Preparation

Review the previous classes. Please feel free to ask during the class, if you have any ambiguous points.

Record end evaluation method

Attendance, participation, quiz and final exam.

Textbook and references

- Developmental biology (Scott F Gilbert)
- Others will be introduced in the class.

Self study

Have a look at the Nature or Science magazine to see how model organisms are used in the latest biological research, and read some articles if you find them interesting.

In addition

Office hours, 10:00 to 18:00, Monday to Friday, please make an appointment beforehand.
Contact, hayokoi@tohoku.ac.jp
1. Class subject

Molecular Ecology and utilization of plankton

2. Object and summary of class

Plankton is a very small organism and its morphology cannot be observed without using a microscope. However, plankton is one of the most important components and significantly contributes to the marine ecosystem. In this class, several researches on plankton ecology using the latest molecular techniques will be introduced.

3. Keywords

Plankton, Harmful and useful species, Molecular ecology

4. Goal of study

Students will learn that molecular methods are effective and are important tools for plankton research. Moreover, students will also understand that plankton improves or worsens human health.

5. Contents and progress schedule of class

1) Classification and biology of toxin-producing plankton
2) Molecular Ecology of toxin-producing plankton
3) Classification and biology of useful plankton
4) Molecular Ecology of useful plankton
5) Applications of useful plankton for human health
6) Food analysis in the gut contents of oyster and octopus larvae
7) Examination

6. Preparation

Understand an outline of each topic in advance

7. Record end evaluation method

Attendance and examination

8. Textbook and references

All handouts will be given within class

9. Self study

Read handouts again and review the molecular topics in plankton. If you are interested in some plankton species, learn more in details from the literature and using Internet, etc.

10. In addition

E-mail: ni5@tohoku.ac.jp
The past, present, and future of industry, science, technology and their relationships and integration in Japan

2. Object and summary of class

This class is a newly developed multidisciplinary course that was organized by the faculties of science, engineering, and agriculture. Except for the first class, each class will feature a talk by a specialist in his/her field. The topic of each talk will be the "past, present, and future of industry, science, and technology, and their relationships and integration in Japan."

Students will obtain fundamental problem-solving abilities, proactiveness, understanding of different cultures, and a multidisciplinary perspective. Registered students are expected to apply what they learn from this course in the newly developed class titled "Multidisciplinary Internship."

3. Keywords

4. Goal of study

The goal of this course is to give students a multidisciplinary perspective and open-minded attitude.

5. Contents and progress schedule of class

Schedule of the course

#1 Guidance
#2-8 Lectures by guest speakers who are specialists in the fields of science, technology, and industry.
(#9) Group presentations and/or individual essay on "The project to integrate the fields of science, technology, and agriculture" by students

6. Preparation

7. Record end evaluation method

Attendance and active participation (50%), a group presentation or an essay on "Our/My project: how we/I will integrate the fields of science, technology, and agriculture" (50%)

8. Textbook and references

NA

9. Self study

10. In addition

The guest speakers and topics will be announced in timely manner. This course is opened to Japanese students, too.
1. Class subject

Restoration and reconstruction of infrastructures in the Sanriku region from tsunami disaster

2. Object and summary of class

The 9.0- magnitude Tohoku-Pacific Ocean Earthquake generated a tsunami as high as 15 meters and completely destroyed the seaside area of Sanriku region. All the infrastructures such as power generation, transportation, farms, residential sections, and so on, therefore, have been reconstructed from the viewpoint of safety and reliability, in addition to comfortability. In order to promote reconstruction of tsunami-stricken areas such as Sanriku region, it is indispensable for considering the safe, stable, and economic supplies of energy, food, living environments, and so on. This subject highlights tsunami damage and revival situation in Sanriku region including coastal ecosystems, and brings to understand the importance of constructing a new relationship between infrastructures with comfortable natures and human activities. You will join this subject for two days (September 27 and 28, 2018).

3. Keywords

4. Goal of study

Students will

- learn about tsunami disaster.
- understand the importance of the relationship between infrastructures with comfortable natures and human activities.
- understand a sustainable supply of energy, food, living environment, and so on, and the application them to reconstruction of human society.

5. Contents and progress schedule of class

- Field trip to Fukushima Renewable Energy Institute, AIST, and Watari City
- Field lecture about tsunami damage at International Research Institute of Disaster Science (IRIDeS)
- Group Discussion and Proposal of the constaruction of safe and comfortable town with renewable energy

6. Preparation

Detailed schedule will be circulated in July 2018.

7. Record end evaluation method

Attendance, Activeness, Report

8. Textbook and references

9. Self study

10. In addition

hmiura@rift.mech.tohoku.ac.jp (Prof. Hideo MIURA)