Tohoku University Summer 2018

Advanced Tutorial in Materials Science \＆Engincering

Monday，Wednesday and Friday（1：00－2：30）
 From June 11－July 13， 2018

Instructor：Fumio S．Ohuchi
Professor of Materials Science and Engineering
University of Washington
Seattle，WA，U．S．A．
Visiting Professor of Tohoku University
Sendai，Japan

ohuchi＠u．washington．edu

Advanced Tutorial in Materials Science and Engineering

Summer 2018：Intensive Lectures（5 weeks） At Tohoku University，Sendai，Japan

1：00－2：30PM 3 times／week for 5 weeks（Monday，Wednesday and Friday）
この集中講義は現在ワシントン大学エ学部物質材料学科で私が教鞭をとっている物質材料科学総論（大学院初年度学生向け）をもとにして作られたものです。 物質材料科学は今や理エ各分野のすべてに浸透しユニークな発展をとげています。それだけに物質材料科学の全体像 をもうー回レビューしてみよう，または専攻は違っても自分なりの物質材料科学を構築してみよ うと思われる学生諸君にこの集中講義は役に立つと思います。そこで この講義では物質材料科学の教科書の各論にそって講じるのではなく，原子配列や電子構造がどのようにそれぞれ の物質の特性を決めお互いに関係しあっているか，熱力や運動論がどのように物質の構成を支配しているかなどの議論に焦点をあわせます。また固体材料に於ける格子点の原子・イオン の振る舞いに起因する特性の相関関係を色々な材料のデータから導き，任意の材料の特性を推論する手掛かりが得られるような関係式を導き出そうという新しい試みも導入します。今年 は今までのCourse Packetを大幅に改定し，各チャプターの関連を強化し，これらの関連知識が学生諸君の将来の研究に役立つように最大限のエ夫をしました。

[^0]
Course contents:

[o] Course introduction
PART-A
[I] Introduction: What's unique about Matls. Sci. and Eng?
[II] Atomistic arrangement and crystal structure
[III] Materials and bonding
[IV] Material's fundamental properties inferred from the lattice energy: A Volume-Based Thermodynamic (VBT) Approach
[V] Point defects and materials stability
[VI] Phase relation and transformation

PART-B

[VII] Materials under stress
[VIII] Electrical conduction and semiconductivity
[IX] Dielectric and optical properties
[X] Optical processes in semiconducting materials

Grading:

Midterm assignment \& presentation 40%
Final exam (in-class exam) 40\%
Class participation 20\%

Pre-requisite:

No prerequisite is required to take this course, but the students are asked to prepare basic background by themselves.

Course pack:

Available for course attendees. Additional supplements in pdf.

Suggested reference books for background information: Any of the following comprehensive text books introducing Materials Science and Engineering will serve as the reference for background.

- Charles A. Wert and Robb M. Thompson: Physics of Solids, McGraw-Hill Book Company.
- William D Callister, Jr. and David G. Rethwisch, Materials Science and Engineering: An Introduction, 6, 7 or $8^{\text {th }}$ Editions, Wiley.
- James F. Shackelford, Introduction to Materials Science for Engineers, 6 or $7^{\text {th }}$ Edition, Macmillan.
- L. H. Van Vlack, Elements of Materials Science and Engineering, $6^{\text {th }}$ Edition,
- Craig R. Barret, William D. Nix and Alan S. Teleman, The Principles of Engineering Materials, Prentice-Hall, Inc. (classical book)

Sample Copies of Course Pack

Tohoku University Summer 2018

Advanced Tutorial in Materials Science \& Engineering

Monday, Wednesday and Friday (1:00-2:30)
From June 11-July 13, 2018

Instructor: Fumio S. Ohuchi

Professor of Materials Science and Engineering
University of Washington
Seattle, WA, U.S.A.
Visiting Professor of Tohoku University Sendai, Japan
ohuchi@u.washington.edu

Course contents:

[o] Course introduction

PART-A

[I] Introduction: What's unique about Matls. Sci. and Eng?
[II] Atomistic arrangement and crystal structure
[III] Materials and bonding
[IV] Material's fundamental properties inferred from the lattice energy: A Volume-Based Thermodynamic (VBT) Approach
[V] Point defects and materials stability
[VI] Phase relation and transformation

PART-B

[VII] Materials under stress
[VIII] Electrical conduction and semiconductivity
[IX] Dielectric and optical properties
[X] Optical processes in semiconducting materials

[I]
 WHAT'S UNIQUE ABOUT MATERIALS SCI. \& ENG.?

The concept of materials science tetrahedron (MST) concisely
depicts the inter-dependent relationship among the structure, properties, performance, and processing of a material.

[I]. Thermodynamics and Kinetics What do they tell us?

Kinetics

Describes reaction speed, whether it is at equilibrium and what factors effect the speed of the reaction

Tells you if it will get there in a reasonable amount of time.

Thermodynamics

Predicts distribution of chemical species and phases if reactions get to equilibrium (or final state)
Says nothing about speed of reaction, nor predict what can happen, but predict what cannot happen.

"Material Processing" is a

thermodynamics, rate and kinetics convoluted process

Thermodynamics vs. Kinetics
 Example (1): Al-Au Bulk vs Thin Film

Bulk couple

- Annealed at 460 C for 100 min :

All 5 compounds in correct order

- Annealed at 200 C for 100 min : AuAl_{2} and AuAl are missing, other present

Thin film couple

Kinetics sometime controls the process

Thermodynamically favorable but kinetically unfavorable This does not happen within your lifetime.

Rate: (Kinetic factor) x (Thermodynamic factor)

Activation energy ($\Delta \mathrm{G}^{\mathrm{a}}$)
Take a chance: i.e., probability $=\mathrm{e}^{-\Delta G^{a} / R T}$

Driving force $\left(\Delta G=G_{2}-G_{1}\right)$
If $\Delta \mathrm{G}<0$: highly happen!

A superimposed plot of Energy vs reaction coordinate, and Boltzmann Energy distribution in understanding the rate theory. Shaded areas give the number of atoms capable of surmounting over the activation barrier.

The net reaction $=n_{2} \exp \left(-\Delta \mathrm{G}_{32} / \mathrm{kT}\right)-\mathrm{n}_{1} \exp \left(-\Delta \mathrm{G}_{31} / \mathrm{kT}\right)$
$=\exp \left(-\Delta \mathrm{G}_{32} / \mathrm{kT}\right)\left[\mathrm{n}_{2}-\mathrm{n}_{1} \exp \left(-\Delta \mathrm{G}_{21} / \mathrm{kT}\right)\right]$
$=\exp \left(-\Delta G^{a} / k T\right)\left[n_{2}-n_{1} \exp \left(-\Delta G^{d} / k T\right)\right]$
(1) If $\Delta \mathrm{G}<\mathrm{o}$ then $\Delta \mathrm{G}_{32}<\Delta \mathrm{G}_{31} \Rightarrow$ net reaction is in the forward direction.
(2) If the driving force is very large, $\Delta \mathrm{G} \ll 0$ then $\Delta \mathrm{G}_{32} \ll \Delta \mathrm{G}_{31}$

$$
\exp \left(-\Delta \mathrm{G}_{32} / \mathrm{kT}\right) \gg \exp \left(-\Delta \mathrm{G}_{31} / \mathrm{kT}\right) \Rightarrow \text { net reaction rate } \approx \mathrm{n}_{2} \exp \left(-\Delta \mathrm{G}_{32} / \mathrm{kT}\right)
$$

(3) If the net reaction rate is zero, system reaches to dynamical equilibrium. Forward and backward reactions continue but equal number of particles are transferred in opposite directions \Rightarrow
$\mathrm{n}_{2} \exp \left(-\Delta \mathrm{G}_{32} / \mathrm{kT}\right)=\mathrm{n}_{1} \exp \left(-\Delta \mathrm{G}_{31} / \mathrm{kT}\right)$
$\mathrm{n}_{2} / \mathrm{n}_{1}=\exp \left\{-\Delta \mathrm{G}^{\mathrm{d}} / \mathrm{kT}\right\}=$ equilibrium constant

Rate Equation = $\boldsymbol{\beta} \mathbf{F}$

B: a system constant (diffusion constant, reaction rate, conductance etc.) The rate at which an atom or ion makes a jump.

F: is the driving force, a measure of how far a system is from equilibrium, or ΔG_{d}

Several important driving forces operative in Materials Science

- Reduction in free energies of formation as a result of chemical reactions and phase transformations,

Example of consequence: oxidation or crystallization

- Reduction of energy due to applied stresses

Example of consequence: creep

- Reduction of surface or interfacial energy, Example of consequence: sintering and grain growth
- Reduction of strain energy

Example of consequence: fracture, segregation

Driving Forces Governing various Phenomena

Rate of transformation: Rate $=\boldsymbol{\beta} \boldsymbol{F}$

Process	Driving Force F	Typ. values (Joul/Mole)	
Fracture	$\mathrm{V}_{\mathrm{m}} \sigma^{2} /(2 \mathrm{Y})$	0.5	$\sigma:$ stress at failure Y: Young's modulus
Grain growth	$2 \gamma_{\mathrm{gb}} / \mathrm{r}$	20	γ_{g} : grain boundary energy $\mathrm{r}:$ radius of a particle
Sintering	$2 \gamma / \mathrm{r}$	100	$\gamma:$ surface energy $\mathrm{r}:$ curvature
Creep	$\sigma \mathrm{V}_{\mathrm{m}}$	1000	$\sigma:$ applied stress $\mathrm{V}_{\mathrm{m}}:$ molar volume
Crystallization	$\Delta \mathrm{H} \Delta \mathrm{T} / \mathrm{T}_{\mathrm{m}}$	3000	$\Delta \mathrm{H}$: enthalpy of transf. $\Delta \mathrm{T}:$ under cooling $\mathrm{T}_{\mathrm{m}}:$ melting point
Inter diffusion	$\mathrm{RT}\left(x_{a} \ln x_{a}+x_{b} \ln x_{b}\right)$	5000	Ideal solution
Oxidation	$\Delta \mathrm{G}_{\text {form }}$	$50,000-$ 500,000	Free energy of formation of oxide; a per-mole-of-

Assumptions : 1000K, molar volume: $10^{-5} \mathrm{~m}^{3} / \mathrm{moll}, \mathrm{r} \sim 1 \mu, \mathrm{~g}=1 \mathrm{~J} / \mathrm{m}^{2} . \sigma=100 \mathrm{MPa}$

[III]. Length Scale in MSE Why smaller scale?

Macro-scale

- Quantum physics kicks in when structures become smaller than the wavelength of an electron in a solid.
- The electrons get squeezed into a "quantum box" and have to adapt to the shape of the solid by changing their wave function.
- Their wavelength gets shorter, and that increases their energy.
- Since the wave function of the outer electrons determines the chemical behavior, one is able to come close to realizing the medieval alchemist's dream of turning one chemical element into another.

Fundamental Length Scales

Quantum

Quantum Well:
Quantum Well Laser

Energy Level Spacing:
$\mathrm{E}_{1}-\mathrm{E}_{\mathrm{o}}=3 \mathrm{~h}^{2} / 8 \mathrm{~m} \boldsymbol{l}^{2}>\mathrm{k}_{\mathrm{B}} \mathrm{T}$

Electric
Capacitor:
Single Electron Transistor

Charging Energy

$$
\mathrm{E}_{\mathrm{C}}=2 \mathrm{e}^{2} / \varepsilon d>\mathrm{k}_{\mathrm{B}} \mathrm{~T}
$$

$$
\varepsilon=12 \text { for silicon }
$$

Magnetic
Magnetic Particle:
Data Storage Media

Magnetic energy barrier

$$
\boldsymbol{a}=V^{1 / 3}
$$

Spin Flip Barrier
$\mathrm{E}_{\mathrm{M}}=1 / 2 \mathrm{M}^{2} \boldsymbol{a}^{3}>\mathrm{k}_{\mathrm{B}} \mathrm{T}$
$l<7 \mathrm{~nm}$
$\boldsymbol{d}<\mathbf{9} \mathrm{nm}$ $a>3 \mathrm{~nm}$

Scattering Length Scale

Elastic

Scattering Potential \rightarrow
Diffraction, Phase Shift

Electron-
Electron
Electron-

Inelastic Trapping at an Impurity

Semiconductors:
Metals:

long
long

Phonon

long
$\approx 1000 \mathrm{~nm}$

$\approx 10 \mathrm{~nm}$
$\approx 100 \mathrm{~nm}$
(Room temperature, longer at low temp.)

Consequences:

- Ballistic electrons at small distances (extra speed gain in small transistors)
- Recombination of electron-hole pairs at defects (energy loss in a solar cell)
- Loss of spin information (optimum thickness of a magnetic hard disk sensor)

Screening Lengths

$\mathrm{l} \sim 1 / \sqrt{ } \mathbf{n}$	(\mathbf{n} = Density of screening charges)

Metals:
Electrons at $\mathrm{E}_{\text {Fermi }}$
Thomas-Fermi s.l.
0.1 nm

Semiconductors: Electrolytes:

Electrons, Holes
Debye s. l.
1-1000 nm

Exponential cutoff of the Coulomb potential (dotted) at the screening length l.

Length Scales in Electrochemistry

Screening
Debye-Hückel Length
Electrolyte

$$
\begin{aligned}
\boldsymbol{l}_{\mathrm{DH}} & =\left(\varepsilon \mathrm{k}_{\mathrm{B}} \mathrm{~T} / 4 \pi \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}^{2}\right)^{1 / 2} \\
& =1 /\left(4 \pi l_{\mathrm{B}} \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{2}\right)^{1 / 2}
\end{aligned}
$$

o. 1 Molar $\mathrm{Na}^{+} \mathrm{Cl}^{-}$

$\boldsymbol{l}_{\mathrm{DH}}=\mathbf{1 . 0} \mathrm{nm}$

Electric: $\quad \mathrm{E}_{\text {Coulomb }}=\mathrm{k}_{\mathrm{B}} \mathrm{T}$
Bjerrum Length, Gouy-Chapman Length Dielectric

$l_{\mathrm{B}}=\mathrm{e}^{2} / \varepsilon \mathrm{k}_{\mathrm{B}} \mathrm{T}, \quad \boldsymbol{l}_{\mathrm{GC}}=2 / \boldsymbol{l}_{\mathrm{B}} \mathrm{e} \sigma$
$=r_{\text {Coulomb }}$
Pure $\mathrm{H}_{2} \mathrm{O}$
$\boldsymbol{l}_{\mathrm{B}}=\mathbf{0 . 7 n m}$

Length Scales in Polymers

(including Biopolymers, such as DNA and Proteins)

Random Walk, Entropy
Radius of Gyration
(overall size, N straight segments)

$$
\boldsymbol{R}_{\mathrm{G}} \propto \boldsymbol{l}_{\mathrm{P}} \sqrt{ } \mathrm{~N}
$$

Copolymers
$\boldsymbol{R}_{\mathrm{G}} \approx 20-\mathbf{5 0} \mathrm{nm}$

Stiffness α vs. $\mathrm{k}_{\mathrm{B}} \mathrm{T}$
Persistence Length
(straight segment)

$$
l_{\mathrm{P}}=\alpha / \mathrm{k}_{\mathrm{B}} \mathrm{~T}
$$

DNA (double) Polystyrene
$\boldsymbol{l}_{\mathrm{P}} \approx \mathbf{5 0} \mathrm{nm} \quad \boldsymbol{l}_{\mathrm{P}} \approx \mathbf{1} \mathrm{nm}$

[II] ATOMISTIC ARRANGEMENT \& CRYSTAL STRUCTURES

- How do atoms assemble into solid structures?
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?
- The properties of some materials are directly related to their crystal structures.
- Significant property differences exist between crystalline and noncrystalline materials having the same composition.

Back ground	MSE 170 (Callister: Chapters 3, 12, 14)
UG course	MSE 331 (Crystallography and XRD)
Grad courses	MSE 510
	MSE 518

[I]. POLYHEDRONS

A POLYHEDRON is a solid that is bounded by polygons (faces) that enclose a single region of space.

Edge $=$ a line segment formed by the intersection of two faces

Which of these are Polyhedrons?

These are polyhedrons.

These are not polyhedrons.

Count the faces, vertices, and edges of each polyhedron

4 faces

4 vertices

6 edges

8 edges
c.

6 faces

6 vertices

10 edges

The Patonic Solias

Five kinds of Regular, Convex Polyhedrons First described by Plato (350BC)

Regular tetrahedron 4 faces

Cube
6 faces

Regular octahedron
8 faces

[III]. CRYSTALLOGRAPHY BASICS

Summary Only

Assume everyone know the basis of crystallography

Counting Atoms \& Lattice Points

$$
\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{I}}+\mathrm{N}_{\mathrm{F}} / 2+\mathrm{N}_{\mathrm{E}} / 4+\mathrm{N}_{\mathrm{C}} / 8
$$

$\mathrm{N}_{\mathrm{I}}=$ \# with centers at interior points.
$\mathrm{N}_{\mathrm{F}}=$ \# with centers at face centers.
$\mathrm{N}_{\mathrm{E}}=$ \# with centers on cell edges.
$\mathrm{N}_{\mathrm{C}}=$ \# with centers on cell corners.

Point Indices $\mathbf{T}=\mathrm{ua}+\mathrm{vb}+\mathrm{wc}$ primitive cell vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \underline{\text { not a Cartesian coordinate system }}$ Example: In any crystal system, $\frac{1}{2} \frac{1}{2} \frac{1}{2}=$ body center $\frac{1}{2} \frac{1}{2} 0=$ a face center $\frac{1}{2} \frac{1}{2} 1=$ a face center

Direction Indices

[uvw]
specific vector from the origin to point uvw any vector \mid to it and of equal length and magnitude

Planes (hkl)
specific plane, whose intercepts with $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are at $\mathrm{a} / \mathrm{h}, \mathrm{b} / \mathrm{k}, \mathrm{c} / \mathrm{l}$

	Specific	Family
Planes	(hkl)	$\{\mathrm{hkl}\}$
Directions	$[\mathrm{uvw}]$	$<\mathrm{uvw}>$

How do you describe "CRYSTAL"?

Crystal $=\underset{\text { (Where to trepeat?) }}{\text { Lattice }}+$ Mhotif (Wrepeat?)

Unit cell of BCC lattice

Real Lattice vs. Reciprocal Lattice

Student's FACT: The concepts of reciprocal lattice, structure factor calculations often 'strike terror' in the hearts of students!

From the real lattice the reciprocal lattice can be geometrically constructed ${ }^{\oplus}$. The properties of the reciprocal lattice are "inverse' of the real lattice \rightarrow planes 'far away' in the real crystal are closer to the origin in the reciprocal lattice.

- A real crystal can be thought of as decoration of a lattice with motif. A reciprocal crystal can be visualized as a Reciprocal Lattice decorated with a motif* of Intensities (structure factor)

$$
\begin{array}{ll}
\text { Real Crystal } & =\text { Real Lattice } \quad+\text { Motif } \\
\text { Reciprocal Crystal } & =\text { Reciprocal Lattice }+ \text { Intensities as Motif* }
\end{array}
$$

The reciprocal of the 'reciprocal lattice' is nothing but the real lattice!

Planes in real lattice become points in reciprocal lattice and vice-versa.

Real vs. Reciprocal Space

FCC in real space

direct lattice: fcc with edge length a

Conjugate Variables

- Conjugate variables to connect real and reciprocal spaces are (x, p) and (E, t).
- There must be a momentum space equivalent to the unit cell.
-This is called by "Brillouin zone (BZ)".
- First BZ is just like an unit cell of the momentum space, so whole energy space can be projected into the first BZ.

[III]. METALLIC CRYSTAL STRUCTURES

(1) Tend to be densely packed.
(2) Reasons for dense packing:

- Typically, only one element is present, so all atomic radii are the same.

Metallic bonding is not directional.
Nearest neighbor distances tend to be small in order to lower bond energy.

- The "electron cloud" shields cores from each other

Energy difference between FCC and HCP stacking

A

A

B

B

C

FCC
Shown displaced for clarity

HCP

Trigonal-prismatic $\mathrm{NbS}_{2}, \mathrm{TaSe}_{2}, \mathrm{MoS}_{2}, \mathrm{WSe}_{2}$

Octahedral
$\mathrm{TiS}_{2}, \mathrm{ZrS}_{2}, \mathrm{TiSe}_{2}, \mathrm{TaS}_{2}$

- Crystals made up of stacking of 2-D hexagonal close-packed layers differ in entropy by only $\sim 10^{-3} \mathrm{k}_{\mathrm{B}}$ per sphere. $\mathrm{T}=300^{\circ} \mathrm{K} \sim 10^{-3} \mathrm{k}_{\mathrm{B}} \mathrm{T}=2.6 \times 10^{-7} \mathrm{eV} /$ sphere
- An ultimate test of accuracy in
- $1^{\text {st }}$ nearest neighbors: No difference; atomistic computations $2^{\text {nd }}$ nearest neighbors: Tiny but real difference \cdot For $10,000 a t o m s, \Delta \mathrm{E} \sim 2.6 \mathrm{meV}$.
- Packing density is the same for FCC and HCP (74\%)
- Use these differences for testing ultimate accuracy in computations.

FCC and HCP stacking: Where can you see? Polytypes in SiC

	3C-SiC	4H-SiC	$\mathbf{6 H - S i C}$	15R-SiC
Band Gap (eV)	2.390	3.265	3.023	2.986
Lattice const (\AA))	4.36	$3.08 / 10.05$	$3.08 / 15.12$	$3.08 / 37.70$
$\mathrm{~m}_{\mathrm{e}}($ electron $) * / \mathrm{m}_{0}$	0.68	0.37	0.69	$0.53 / 0.25$
$\mathrm{~m}_{\mathrm{h}}($ hole $) * / \mathrm{m}_{0}$		0.94	0.92	
$\mu_{\mathrm{e}}\left(\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{sec}\right)$	900	500	300	400
$\mu_{\mathrm{h}}\left(\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{sec}\right)$	20	50	50	

$\mathrm{CN} \#=6$

close-packed directions contains $8 \times 1 / 8=$

1 atom/unit cell

- APF ~0.50

$8 \times 1 / 8+1$
$=2$ atoms/unit cell

$8 \times 1 / 8+6 \times 1 / 2$
$=4$ atoms/unit cell

[VI]. TYPE OF CERAMIC MATERIALS

Is there any guide line to predict which structure is taken for a given set of pair ions?

Low EN
 High EN

$(A)_{n}(X) m$

Octahedral interstitial sites

- How many octahedral sites seen?

$$
\begin{array}{cc}
\text { Center }=1 & \text { Edge= }=12 \\
100 \% & 25 \%
\end{array}
$$

Total $=1 \cdot 100 \%+12 \cdot 25 \%=4$ sites/cell Symmetric

Tetrahedral interstitial sites

- How many tetrahedral sites seen? Inside $=8$ 100\%
Total $=8 \cdot 100 \%=8$ sites/cell Symmetric

\# of Anions X Always=4	Cations M in Oct. sites Max=4	Cations M in Tetra. Sites Max=8	Stoichiometry	Examples
4	$\begin{gathered} 4 \\ (100 \%) \end{gathered}$	0	$\begin{gathered} \text { M4X4 } \\ \text { (MX) } \end{gathered}$	$\begin{gathered} \mathrm{NaCl} \\ (6: 6 \mathrm{CN}) \end{gathered}$
4	O	$\begin{gathered} 8 \\ (100 \%) \end{gathered}$	$\begin{aligned} & \text { M8X4 } \\ & \text { (M2X) } \end{aligned}$	$\underset{\text { Anti-fluoride }}{\mathrm{K2O}}$
4	O	$\begin{gathered} 4 \\ (50 \%) \end{gathered}$	$\begin{aligned} & \text { M4X4 } \\ & \text { (MX) } \end{aligned}$	$\underset{\text { Zincblende }}{\mathrm{ZnS}}$
4	$\begin{gathered} 2 \\ (50 \%) \end{gathered}$	o	$\begin{aligned} & \mathrm{M} 2 \mathrm{X} 4 \\ & \text { (MX2) } \end{aligned}$	CaF2 Fluoride
4	$\begin{gathered} 4 \\ (100 \%) \end{gathered}$	$\begin{gathered} 8 \\ (100 \%) \end{gathered}$	$\begin{gathered} \left(\mathrm{M}_{12 \mathrm{X} 4)}\right. \\ \mathrm{M} 3 \mathrm{X} \end{gathered}$	So far Not known
4	$\begin{gathered} 2 \\ (50 \%) \end{gathered}$	$\begin{gathered} 1 \\ (12.5 \%) \end{gathered}$	$\mathrm{M}_{3} \mathrm{X}_{4}$	$\underset{\text { Spinel }}{\mathrm{MgAl}_{2} \mathrm{O}}$

Is there any guide line to predict which structure is taken for a given set of pair ions?

Coordination \# and Ionic Radii

- Coordination \# increases with $\frac{r_{\text {cation }}}{r_{\text {anion }}}$

To form a stable structure, how many anions can surround a cation?

[III] MATERIALS AND BONDING:

Metallic, Covalent and Ionic characters

- What promotes metallic bonding?
- What properties are inferred from metallic bonding?
- Basis of the electronic structure of metals

```
UW courses
Background MSE }170\mathrm{ (Callister: Chapter 2, 12, 14)
    General Chemistry 100 level
    General Physics 100 level
UG course MSE 351 Grad courses MSE 510, MSE 518
```


[I]. Nature of the Bond and Band Formation

Ionic - Exchange of valence electrons

- Electrostatic (culombic) attractive forces
- Non-directional nature (favor high symmetric str with high CN\#)
- Large bonding energies

Covalent • Shared electrons between adjacent atoms

- Directional nature (favor low CN\#)
- Wide range of bonding energies

Metallic •Electron cloud / ion core

- Delocalized nature
- Wide range of bonding energies

General Treatment of Energy Bands in X'tal

- A crystal is a solid consisting of a regular and repetitive arrangement of atoms, ions or molecules in space.
- Positions of the atoms in the crystal are lattice points, forming a crystal lattice.
- The distance between the atoms in a crystal is fixed and is termed as lattice constant.

Variation of potential energy of an e^{-} with its distance from the nucleus.

Potential energy variation of an ealong a row of atoms in a crystal

Potential energy variation of an e-with distance between two identical nuclei

Apply Schrodinger equation
$-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+V(x) \psi=E \psi$

$$
\hat{H} \psi=E \psi
$$

An intuitive idea of "Atom Bonding"

Consider: Bring two atoms from the distance

Then, bring many atoms from the distance

Isolated atom-1	Isolated atom-2	Isolated atom-3	Isolated atom-n
an=2			

Electrons in the Periodic Potential
 A Next Level Approach : The Kronig-Penney Model

Schrodinger equation $\frac{\partial^{2} \Psi(x)}{\partial x^{2}}+\left(\frac{2 m}{\hbar^{2}}(E-V(x) p) \Psi(x)=0\right.$

More accurately illustrated

[II].Consequence of the Band Formation

$\mathrm{V}(\mathrm{x})=0$
Weak V(x)

Example(1): Group IA, IB metals

Weak V(x) Energy

Examples (4): Semiconducting and Insulating Materials

Metals

Semimetals

Semiconduelors

In-direct band gap SC

Direct band gap SC

Sup-R. PART[III] 2-3

$$
\eta=\frac{\text { Volumne of "momentum sphere" }}{\text { momentum element }}=
$$

Density of States (DOS) : $g(E)$

\# of events "per" energy
$g(E)=\frac{d \eta}{d E}=\frac{d}{d E}\left(\bigcap_{B}\right)$

$=\frac{a^{3}}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \cdot E^{1 / 2}=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \cdot E^{1 / 2}$

Temperature effect in e-occupation

The Fermi Energy

$$
\begin{aligned}
\mathrm{N}^{*} & =\int \mathrm{N}(\mathrm{E}) \mathrm{dE} \\
& =\int_{0}^{\infty} 2 \cdot g(E) \cdot F(E) d E \\
& =\int_{0}^{E_{F}} 2 \cdot g(E) \cdot 1 d E
\end{aligned}
$$

Solve for the Fermi-energy

$$
\begin{aligned}
E_{F} & =\left(3 \pi^{2} N^{\prime}\right)^{2 / 3} \cdot \frac{\hbar^{2}}{2 m} \\
N^{\prime} & =\frac{N^{*}}{V}=\frac{\text { Max\#of.electron }}{\text { Volumn }}
\end{aligned}
$$

= \#of .electron / unit.volume

HETEROPOLAR BONDING MATERJALS

$\mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} \underline{s^{1}} 3 p 3 d 4 s--0$

DOS $g(E)$

$$
N(E)=2 \underbrace{g(E)}_{\text {DOS }} \cdot F(E)=2 \cdot \frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{E} \cdot F(E) \quad \begin{aligned}
& \text { Fermi-Dirac distribution function } \\
& \mathrm{F}(\mathrm{E})=\frac{1}{\exp \left(\frac{\mathrm{E}-\mathrm{E}_{\mathrm{F}}}{\mathrm{kT}}\right)+1}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N}^{*} & =\int \mathrm{N}(\mathrm{E}) \mathrm{dE} & & \\
& =\int_{0}^{\infty} 2 \cdot g(E) \cdot F(E) d E & E_{F} & =\left(3 \pi^{2} N^{\prime}\right)^{2 / 3} \cdot \frac{\hbar^{2}}{2 m} \\
& =\int_{r}^{E_{r}} 2 \cdot g(E) \cdot 1 d E & N^{\prime} & =\frac{N^{*}}{V}=\frac{\text { Max\#of .electron }}{\text { Volumn }}
\end{aligned}
$$

Potential Energy of an Ion Pair

- Lattice energy, $U_{\text {lattice }}$, is defined as the enthalpy required to form one mole of crystalline solid in its standard state from the gaseous ions

Example: $\quad \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{NaCl}(\mathrm{s}) \quad U_{\text {lattice }}=-786.8 \mathrm{~kJ} / \mathrm{mole}$
This reaction is exothermic (spontaneously happen) Want to know

- How do you find $U_{\text {lattice }}$?

Born-Haber Cycle for $\mathbf{N a C l}$

$$
\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}_{-1}(\mathrm{~g})
$$

Thermodynamics data (per mole)

$\mathrm{Na}(s) \rightarrow \mathrm{Na}(g)$	$\Delta H_{\text {sub }}^{\circ}=107.7 \mathrm{~kJ}$
$\mathrm{Na}(g) \rightarrow \mathrm{Na}^{+}(g)+e^{-}$	$I=496 \mathrm{~kJ}$
$1 / 2 \mathrm{Cl}(g) \rightarrow \mathrm{Cl}_{2}(g)$	$1 / 2 D=121.7 \mathrm{~kJ}$
$\mathrm{Cl}(g)+e^{-} \rightarrow \mathrm{Cl}^{-}(g)$	$A=-349 \mathrm{~kJ}$
$\mathrm{Na}^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{NaCl}(s)$	$U_{\text {lattice }}=?$
$\mathrm{Na}(s)+1 / 2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NaCl}(s)$	$\Delta H_{f}^{0}=-410.9 \mathrm{~kJ}$

$$
\begin{aligned}
& \Delta H_{f}^{\mathrm{o}}=\Delta H_{\text {sub }}^{0}+I+1 / 2 D+A+U_{\text {lattice }} \\
& \begin{aligned}
U_{\text {lattice }} & =-\left(\Delta H_{\text {sub }}^{\mathrm{o}}+I+1 / 2 D+A\right)+\Delta H_{f}^{\mathrm{o}} \\
& =-(107.7 \mathrm{~kJ}+496 \mathrm{~kJ}+121.7 \mathrm{~kJ}+(-349 \mathrm{~kJ})+(-410.9) \mathrm{kJ}) \\
& =-787 \mathrm{~kJ} / \text { mole }
\end{aligned}
\end{aligned}
$$

[IV] MATERIAL'S FUNDAMENTAL PROPERTIES
 A Volume-Based Thermodynamics (VBT) approach

- Introduction of volume-based thermodynamics approach
- Formula unit volume and mean average bonding volume
- Significance of the lattice energy
- Material's fundamental properties inferred from the lattice energy

| Background | MSE 170 (Callister: Chapter 2, 12, 14)
 General Chemistry 100/200 level
 General Physics |
| :--- | ---: | :--- |
| | |
| 100/200 level | |

VOLUME-BASED THERMODYNAMICS (VBT) APPROACH "Predictive Thermodynamics for Condensed Phases"

- For hypothetical materials or materials under development, experimental data are often unavailable, or necessarily impossible to obtain.
- Modulus of elasticity, thermal expansion coefficient, melting temperature are three material's fundamental properties directly inferred from the lattice energy of the condensed phases.

- Original work done by Classer and Jenkins* is a method applied to both ionic and covalent solids, principally via "formula unit volumes", providing a new thermo-dynamic tool for such assessment.
(1) Formula unit (fU) volume $\left(\boldsymbol{V}_{\boldsymbol{m}}\right) \quad V_{m}=\frac{W_{m}}{\rho} \quad \begin{gathered}W_{m}: \\ \rho: \text { Formula weight of material }\end{gathered}$
(2) Mean average bonding volume (q) $\quad q=\frac{V_{m}}{N_{m}} \quad \begin{aligned} & V_{m}: \text { Formula unit volume (fU) } \\ & N_{m}: \# \text { of atoms (in 1-fU) }\end{aligned}$

Summary of q values of various materials

(1) A " q " value varies from material to material, but many materials show $\boldsymbol{q} \sim 6.5 \mathrm{~cm}^{3} /$ atom-fU (i.e., per atom in 1-fU of material) except a few cases.
(2) This means: Mean bonding volume of atom in 1-fU of the material (unit: $\mathrm{cm}^{3} /$ atom-fU) is similar for all materials.
(3) Material specific values of " q ".

Multivalent Oxides	$q \sim 6.5-7.5 \mathrm{~cm}^{3} /$ atom-fU	
Monovalent Oxides	$q \sim 11.5 \mathrm{~cm}^{3} /$ atom-fU $\quad(\mathrm{A})_{\mathrm{n}}(\mathrm{B})_{\mathrm{m}}$	
Nitrides	$q \sim 6.5 \mathrm{~cm}^{3} /$ atom-fU	
Carbides	$q \sim 6.5 \mathrm{~cm}^{3} /$ atom-fU	
Fluorides	$q \sim 7.4 \pm 1.2(20 \%) \mathrm{cm}^{3} /$ atom-fU	
Hydro-oxides	$q \sim 9.1 \pm 1.2(13 \%) \mathrm{cm}^{3} /$ atom-fU	
Chlorides	$q \sim 13.3 \pm 1.8(14 \%) \mathrm{cm}^{3} /$ atom-fU	

(4) Material's properties (such as E, α, C_{p} etc) can be expressed in terms of q. (to be discussed in later chapters)

[II]. LATTICE ENERGY, $U_{\text {lattice }}$

Recent progress on estimating $U_{\text {lattice }}$ from V_{m} and ionic separation
Three recent papers 1. Jenkins, et al., Inorganic Chemistry 1999, 38, 3609-3620.
2. Glasser, et al., J. Am. Chem. Soc. 2000, 122, 632-638.
3. Kaya and Kaya, Inorganic Chemistry 2015, 54(17), 8207-8213.

(2). Parameterized the equation in a form of:

$$
U_{\text {lattice }}=2 I\left[\frac{\alpha}{V_{m}^{1 / 3}}+\beta\right] \quad \text { where } \alpha \text { and } \beta \text { are empirical consts }
$$

(3). Ionic separation $\langle\mathrm{r}\rangle$ is evaluated through formula volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ as $\langle\mathrm{r}\rangle=\left(\mathrm{V}_{\mathrm{m}}\right)^{1 / 3 / 2}$
(4). Introduction of "chemical hardness" (ref. 3), then developed parameterized equation in a form of:

$$
U_{\text {lattice }}=2 I\left[a \frac{\eta_{M}}{V_{m}^{1 / 3}}+b\right]
$$

This form can be applied to materials with $\mathrm{U}_{\text {lattice }}<5000 \mathrm{~kJ} /$ mole very accurately.

Estimation of $\boldsymbol{U}_{\text {lattice }}$ from V_{m} and ionic separation

Example: $\mathrm{MgAl}_{\rho} \mathrm{O}_{\Delta}$ (Spinel)

Three recent papers

1. Jenkins, et al., Inorganic Chemistry 1999, 38, 3609-3620.
2. Glasser, et al., J. Am. Chem. Soc. 2000, 122, 632-638.

Kaya and Kaya, Inorganic Chemistry 2015, 54(17), 8207-8213.
 1 fU-Volume equivalent
to one $\mathrm{MgAl}_{2} \mathrm{O}_{4}(7$ atoms $)$$\quad \underline{\text { Mean average "bonding volume" }}$ to one $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (7 atoms) of atom in $1-\mathrm{fU}$ of material.

Born-Lande eq. for $U_{\text {lattice }} \longrightarrow$ Parameterized equation for each material $U_{\text {lattice }}=-A \frac{M Z_{1} Z_{2}}{4 \pi \varepsilon_{0} r_{0}}\left(1-\frac{1}{n}\right) \longrightarrow \underset{\text { (Ref. 1) }}{U_{\text {latice }}=2 I\left[\frac{\alpha}{V_{m}^{1 / 3}}+\beta\right] \Longrightarrow \underset{\text { (Ref. 2) }}{U_{\text {latice }}}=2 I\left[a \frac{\eta_{M}}{V_{m}^{1 / 3}}+b\right] ~}$ $\eta_{M}=$ "Chemical hardness" A measure of the resistance toward electron cloud polarization or deformation of chemical species

More ionic (less poralization)	Higher chemical hardness (η_{M}) or large η_{M} value	
		Examples $\eta_{A l F}=8.59$
		$\eta_{\text {AlCl }}=7.35$
	Lower chemical hardness (η_{M}) or low η_{M} value	$\eta_{A l B r}=5.90$
More covalent (more poralization)		(Ref. 2)

Correlation between
 Lattice energy $\left(U_{\text {lattice }}\right)$ \& Modulus of Elasticity (E) (Volume-Based Thermodynamics (VBT) approach)

At equilibrium position:

$$
\begin{aligned}
& \left(F_{r=r_{0}}\right)=\left(\frac{d U}{d r}\right)_{r=r_{0}}=\left.\left(\frac{A C e^{2}}{r^{2}}-\frac{n B}{r^{n+1}}\right)\right|_{r=r_{0}}=0 \Longrightarrow r_{0}=\left(\frac{n B}{A C e^{2}}\right)^{\frac{1}{n-1}} \\
& \text { Young's modulus: } E=\left.\frac{d \sigma}{d \epsilon}\right|_{\epsilon \rightarrow 0}=\left.\frac{1}{r_{0}} \frac{d F}{d r}\right|_{r \rightarrow r_{0}}
\end{aligned}
$$

$$
=\left.\frac{1}{r_{0}} \frac{d}{d r}\left(\frac{A C e^{2}}{r^{2}}-\frac{n B}{r^{n+1}}\right)\right|_{r \rightarrow r_{0}}
$$

Go through derivation, then you get:

$$
E=\frac{(n-1) A C e^{2}}{r_{0}^{4}}
$$

Modulus of elasticity: $E=\frac{(n-1) A C e^{2}}{r_{0}^{4}} \propto \frac{1}{\left(r_{0}\right)^{4}} \equiv \frac{1}{r_{0}} \bullet \frac{1}{\left(r_{0}\right)^{3}} \propto \frac{1}{\left(V_{m}\right)^{1 / 3}} \bullet \frac{1}{V_{m}} \equiv \frac{U_{\text {lattice }}}{V_{m}}$

$$
\Rightarrow U_{\text {laticice }} \propto \frac{1}{\left(V_{m}\right)^{1 / 3}}
$$

$$
\therefore \quad E=\text { const } \bullet \frac{U_{\text {lattice }}}{V_{m}} \quad \begin{aligned}
& \mathrm{V}_{\mathrm{m}}: \text { Formula unit }(\mathrm{fU}) \text { volume } \\
& \mathrm{N}_{\mathrm{m}}: \# \text { of atoms in } 1-\mathrm{fU} .
\end{aligned}
$$

Estimation of the Modulus of Elasticity (E) For Known Materials

If you know the material you are working, $U_{\text {lattice }}$ and V_{m} are known.

Experimental facts about \boldsymbol{E} vs $\boldsymbol{T}_{\boldsymbol{m}}$

- Materials data indicate: $E \propto T_{m}$ or

- E and T_{m} have different dimensions: Dimensional analysis of ζ

$$
E=\zeta T_{m} \propto \frac{(\text { heat }- \text { capacity })}{(\text { volume })} \bullet T_{m}=\frac{C_{p}}{V_{m}} \bullet T_{m}
$$

$$
E=\text { const } \bullet \frac{C_{p} T_{m}}{V_{m}}=\text { const } \bullet \frac{3 N R T_{m}}{V_{m}}=\text { const } \bullet \frac{3 R T_{m}}{\frac{V_{m}}{N}}=\text { const } \bullet \frac{3 R T_{m}}{q}
$$

$$
\therefore E \propto \frac{T_{m}}{q}
$$

$$
\begin{aligned}
& E=\zeta T_{m} \propto \frac{(\text { heat }- \text { capacity })}{(\text { volume })} \bullet T_{m}=\frac{C_{p}}{V_{m}} \bullet T_{m}
\end{aligned}
$$

[^0]: 講義は英語で行いますが，必要に応じて日本語も少し導入し言葉の壁を乗り越えて学生諸君 と授業で交流します。この授業では，学生各個人が積極的に授業に参加してもらうことを期待 してできるだけ授業はフレキシブルに行います。私は 25 歳で渡米し今年でアメリカ在住 43 年 になりますが，今までの私の色々な経験が学生諸君の何かに役に立てればと思いこの集中講義を開催します。奮って参加して下さい。

