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Course contents: 
  

 [0]  Course introduction 
 

 [I]   Introduction: What’s unique about Matls. Sci. and Eng? 
 [II]  Atomistic arrangement and crystal structure  
 [III]  Materials and bonding 
 [IV]  Material’s fundamental properties inferred from the lattice  
   energy: A Volume-Based Thermodynamic (VBT) Approach 
 [V]  Point defects and materials stability 
 [VI]  Phase relation and transformation 

 
 [VII]  Materials under stress 
 [VIII]  Electrical conduction and semiconductivity 
 [IX]  Dielectric and optical properties 
 [X]  Optical processes in semiconducting materials     

PART-A 

PART-B 

Grading:    
    Midterm assignment & presentation  40% 
    Final exam (in-class exam)       40% 
    Class participation             20% 

  
Pre-requisite:    

No prerequisite is required to take this course, but the students  
are asked to prepare basic background by themselves.   

     
Course pack:    

Available for course attendees.  
Additional supplements in pdf. 

  
Suggested reference books for background information:  Any of the following 
comprehensive text books introducing Materials Science and Engineering will serve as 
the reference for background.    
  
•  Charles A. Wert and Robb M. Thompson:  Physics of Solids, McGraw-Hill Book Company. 
•  William D Callister, Jr. and David G. Rethwisch, Materials Science and Engineering:  An 

 Introduction, 6, 7 or 8th  Editions, Wiley. 
•  James F. Shackelford, Introduction to Materials Science for Engineers, 6 or 7th Edition, 

 Macmillan. 
•  L. H. Van Vlack, Elements of Materials Science and Engineering, 6th Edition,  
•  Craig R. Barret, William D. Nix and Alan S. Teleman, The Principles of Engineering 

 Materials, Prentice-Hall, Inc. (classical book) 
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The concept of materials science tetrahedron (MST) concisely 
depicts the inter-dependent relationship among the structure, 

properties, performance, and processing of a material. 

[I] 
WHAT’S UNIQUE ABOUT 
MATERIALS SCI. & ENG.? 

Kinetic control Thermodynamic control 

Transition state 

intermediate 

interm
ediate Starting 

materials 

Kinetic  
product 

Thermodynamic 
product 

       Kinetics   
 Describes reaction speed, whether it 
is at equilibrium and what factors 
effect the speed of the reaction 

 
 Tells you if it will get there in a 
reasonable amount of time. 

 

 Thermodynamics 
 Predicts distribution of chemical 
species and phases if reactions get to 
equilibrium (or final state) 

 Says nothing about speed of reaction, 
nor predict what can happen, but 
predict what cannot happen. 

[I]. Thermodynamics and Kinetics 
What do they tell us? 



state A 

state B 
Initial         Activated              Final 
 state               state                  state  

ΔGa 

ΔG 

ΔG’a 

ΔG’ 

Metastate B’ 

ΔGa:  activation free energy barrier.   

ΔG : driving force of transformation 
         from State-A to State-B 

state A 

state B 

Surroundings 

state B’ 

“Material Processing” is a  
thermodynamics, rate and kinetics convoluted process 

Kinetics controlled process 

Al2Au 
AlAu 

 
 
 
AlAu2 

Al2Au5 

AlAu4 

733K(460C) 

473K(200C) 

AlAu4 
Al2Au 

150C 
100C 

  Example (1): Al-Au Bulk vs Thin Film  

 
 • Annealed at 460C for 100min:   

   All 5 compounds in correct order 
    
• Annealed at 200C for 100min:  
   AuAl2 and AuAl are missing, other present 
 

Thin film couple  

Thermodynamics  vs.  Kinetics 

• Reaction depends on thickness  
   of each material 
• Why are AlAu and Al2Au5 not seen? 
 

Bulk sample  

Thin film sample  

Bulk couple  



Kinetics sometime controls the process 

Diamond 

Graphite 

Good example 

This does not happen within your lifetime. 

X 

Rate:  (Kinetic factor) x (Thermodynamic factor) 
    Activation energy (ΔGa)                  Driving force (ΔG=G2-G1) 
      

If  ΔG<0 : highly happen! 

Thermodynamically favorable but kinetically unfavorable 

Take a chance: i.e., probability =e- ΔGa RT

A superimposed plot of Energy vs reaction coordinate, and Boltzmann Energy distribution in understanding 
the rate theory.  Shaded areas give the number of atoms capable of surmounting over the activation barrier.  

ΔGa =act. energy 

ΔGd =driv. force 

# of particles 

En
er

gy
 

Reaction Coordinate 

G3 

# of particles 

G1 

G2 

ΔG32
 

ΔG31
 

n1 n2 

ΔG21
 

The net reaction =  n2 exp (�ΔG32/kT)  � n1 exp (�ΔG31/kT) 
                             = exp (�ΔG32/kT) [n2�n1 exp (�ΔG21/kT)] 
                             = exp (�ΔGa/kT) [n2�n1 exp (�ΔGd/kT)] 

 
(1)  If ΔG < 0 then ΔG32 < ΔG31  ⇒ net reaction is in the forward direction.  
 
(2) If the driving force is very large, ΔG<<0 then  ΔG32<<ΔG31 

   exp (�ΔG32/kT) >> exp (�ΔG31/kT) ⇒ net reaction rate  ≈ n2 exp (�ΔG32/kT) 
 
(3) If the net reaction rate is zero, system reaches to dynamical equilibrium. Forward and backward  
      reactions continue but equal number of particles  are transferred in opposite directions ⇒ 

 n2 exp(�ΔG32/kT) = n1 exp(�ΔG31/kT)  
  n2/n1 = exp{�ΔGd/kT} = equilibrium constant 



         
         

                           
         

         
                  

         

          ß:  a system constant (diffusion constant, reaction rate,  
       conductance etc.)   The rate at which an atom or ion makes a jump. 
   
 F:  is the driving force, a measure of how far a system is from 
       equilibrium, or ΔGd 
 

Several important driving forces operative in Materials Science 
 
•  Reduction in free energies of formation as a result of chemical   

reactions and phase transformations,      
   Example of consequence:  oxidation or crystallization 

 
•  Reduction of energy due to applied stresses 

   Example of consequence:  creep 
 
•  Reduction of surface or interfacial energy,  

    Example of consequence:  sintering and grain growth 

•  Reduction of strain energy 
     Example of consequence:  fracture, segregation 

 
 

Rate Equation = ß F 

Driving Forces Governing various Phenomena 

Process 
 
Fracture 
 
Grain growth 
 
Sintering 
 
Creep 

Crystallization 
 
Inter diffusion 

Oxidation 
 

Driving Force 
F 

Vmσ2/(2Y) 
 

2γgb/r 

2γ/r 
 

σVm 
 

ΔHΔT/Tm 
 

RΤ(xalnxa+xblnxb) 

ΔGform 
 

Typ. values 
(Joul/Mole) 

 
0.5 σ: stress at failure 

Y: Young’s modulus 

20 γgb: grain boundary energy 
r: radius of a particle 

100 

1000 σ: applied stress 
Vm: molar volume 

3000 
ΔH  : enthalpy of transf. 
ΔT  : under cooling 
 Tm : melting point 

5000  
Ideal solution 

50,000- 
500,000 

Free energy of formation  
of oxide; a per-mole-of-O. 

γ: surface energy 
r: curvature 

Assumptions : 1000K,  molar volume: 10-5m3/moll,  r ~1µ, g=1J/m2.  σ=100MPa 

Rate of transformation:   Rate=βF 



[III]. Length Scale in MSE 
    Why smaller scale? 

Macro-scale 

Meso-scale 
Nano-scale 

•  Quantum physics kicks in when structures become smaller than 
the wavelength of  an electron in a solid.  

•  The electrons get squeezed into a �quantum box�� and have to 
adapt to the shape of the solid by changing their wave function.   

•  Their wavelength gets shorter, and that increases their energy. 
•  Since the wave function of the outer electrons determines the 

chemical behavior, one is able to  come close to realizing the 
medieval alchemist�s dream of turning one chemical element 
into another.  

Micro-scale 

Fundamental Length Scales 
Quantum                     Electric            Magnetic 

Quantum Well: 
Quantum Well Laser 

 
  

Capacitor: 
Single Electron Transistor 

 
 
  

Magnetic Particle: 
Data Storage Media 

a = V1/3 

Charging Energy 

EC =2e2/ε d > kBT 

 

Spin Flip Barrier         
EM = ½ M2a3 

d 

E1 
E0 

l 

l < 7 nm      d < 9 nm      a > 3 nm 

       Energy Level Spacing: 

E1-E0 = 3h2/8m l2 > kBT 

Magnetic energy barrier  

 > kBT 

ε =12 for silicon 



 
         Elastic     Inelastic 
          ΔE = 0       ΔE > 0 
 
 
Scattering Potential →       Electron-    Electron-            Trapping at 
Diffraction, Phase Shift       Electron    Phonon               an Impurity 

        
 
 
 
 

 Semiconductors:              long              long       ≈ 10 nm  
 Metals:                  long          ≈ 1000 nm                 ≈ 100 nm 

 
Consequences: 
•  Ballistic electrons at small distances  (extra speed gain in small transistors) 
•  Recombination of electron-hole pairs at defects  (energy loss in a solar cell) 
•  Loss of spin information  (optimum thickness of a magnetic hard disk sensor)    

e- 

e- e- 
h+ 

e- e- 

e- 
phonon 

(Room temperature, 
longer at low temp.) 

Scattering Length Scale 

 
        

l ~ 1 / √n        (n = Density of screening charges)  
      Metals:           Semiconductors:      Electrolytes:  

Electrons at EFermi           Electrons, Holes                      Ions    
            Thomas-Fermi s. l.                      Debye s. l.        Dbye-Hückel s.l.  

        0.1 nm                     1-1000 nm                       0.1-100 nm  

Exponential cutoff of the Coulomb 
potential (dotted) at the screening 
length l . 

V(r) ∝ 
q 

 
e-r/l 

 r 

V 

r l 

Screening Lengths 



Length Scales  in  Electrochemistry 
   Screening               Electric:     ECoulomb = kBT 

Debye-Hückel Length  
Electrolyte 

Bjerrum  Length,   Gouy-Chapman Length 
                   Dielectric 

Pure H2O 
 

lB = 0.7 nm 

lB  =  e2 / ε kBT   ,         lGC = 2 / lBe σ  
     =  rCoulomb 

lDH = ( ε kBT / 4π Σniqi
2

 ) ½ 

=  1 / (4π lB Σnizi
2

 ) ½ 

0.1 Molar Na+Cl- 
 

 lDH = 1.0 nm 

ni,qi=ezi 

lGC 

-σ e 

lB 

-e e 

Length Scales  in  Polymers  
(including Biopolymers, such as DNA and Proteins) 

Random Walk,  Entropy                   Stiffness  α  vs.  kBT 
Persistence Length 
(straight segment) 

lP =  α / kBT  

DNA (double)     Polystyrene   
  
   lP ≈ 50 nm       lP ≈ 1 nm 

lP 

cosθ = 1/e 

a 

Radius of Gyration 
(overall size, N straight segments) 

RG ∝  lP √N  

Copolymers 
 

RG ≈ 20-50 nm 

RG 



•  How do atoms assemble into solid structures? 
•  How does the density of a material depend on its structure? 
•  When do material properties vary with the sample (i.e., part) orientation? 
•  The properties of some materials are directly related to their crystal structures. 
•   Significant property differences exist between crystalline and noncrystalline   
    materials having the same composition. 
 
 
 
  

 
[II] 

      ATOMISTIC ARRANGEMENT         
&  CRYSTAL STRUCTURES 

Back ground      MSE 170 (Callister: Chapters 3, 12, 14) 
 
UG course  MSE 331 (Crystallography and XRD) 
 
Grad courses      MSE 510 

  MSE 518 

[I]. POLYHEDRONS 
A POLYHEDRON is a solid that is bounded by polygons (faces) 
that enclose a single region of space.  
 
 
 
 
 
 
 
 
 
 

= a line segment formed by the intersection of two faces 

= a point where three or more edges meet 

Which of these are Polyhedrons? 
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Example 1 
Counting Faces, Vertices, and Edges 

n  Count the faces, vertices, and 
edges of each polyhedron 

Example 1 
Counting Faces, Vertices, and Edges 

n  Count the faces, vertices, and 
edges of each polyhedron 

Example 1 
Counting Faces, Vertices, and Edges 

n  Count the faces, vertices, and 
edges of each polyhedron 

Count the faces, vertices, and edges of each polyhedron 

4 faces 
 

4 vertices 6 edges 

5 faces 5 vertices 8 edges 

6 faces 6 vertices 10 edges 

F + V = E + 2 
Euler's Theorem 

The Seven Crystal Systems  

[I] cubic 
a 

b 

c 

Iron pyrite FeS2 
“Fools Gold” 
An unusual +4 valency 

Fluorite 

[II] tetragonal 

a 

b 

c 

        

PbMoO4  
Wulfenite  Nd+3: CaWO4  

A lasing material  

The Seven Crystal Systems  

[I] cubic 
a 

b 

c 

Iron pyrite FeS2 
“Fools Gold” 
An unusual +4 valency 

Fluorite 

[II] tetragonal 

a 

b 

c 

        

PbMoO4  
Wulfenite  

cubic 
tetragonal [III]Orthorhombic 

Baryte crystal 
Main industrial source of barium 

The Seven Crystal Systems  

[I] cubic 
a 

b 

c 

Iron pyrite FeS2 
“Fools Gold” 
An unusual +4 valency 

Fluorite 

[II] tetragonal 

a 

b 

c 

        

PbMoO4  
Wulfenite  

cubic 
tetragonal [III]Orthorhombic 

cubic 
tetragonal orthorhombic 

=90˚ 
a = b = c ,  α = β = 90˚= γ   

Calcite : CaCO3 

[IV]rhombohedral 

The Seven Crystal Systems  

[I] cubic 
a 

b 

c 

Iron pyrite FeS2 
“Fools Gold” 
An unusual +4 valency 

Fluorite 

[II] tetragonal 

a 

b 

c 

        

PbMoO4  
Wulfenite  

cubic 
tetragonal [III]Orthorhombic 

cubic 
tetragonal orthorhombic 

=90˚ 

[IV]rhombohedral 

cubic 
tetragonal 

[V]hexagonal 

orthorhombic 

rhombohedral 

=90˚ =120˚ 

The Seven Crystal Systems  

cubic 
tetragonal orthorhombic 

rhombohedral 

=90˚ 

hexagonal 

=120˚ a = b = c = a,  α = β = 90˚ = γ 

Selenite   
(�The Moon�)  
a fully transparent 
form of gypsum, 
CaSO4•2H2O 

[VI] monoclinic 

The Seven Crystal Systems  
Five kinds of Regular, Convex Polyhedrons 
First described by Plato (350BC) 
 

4 faces 6 faces 8 faces 

12 faces 20 faces 

The Platonic Solids 
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[III]. CRYSTALLOGRAPHY BASICS 
 Summary Only 

a

Example: In any crystal system, 

Assume everyone know the basis of crystallography 

Crystal =  Lattice  +  Motif 

+ = 
Unit cell of BCC lattice 

(Where to repeat?) (What to repeat?) 

Crystal =Space group +  Asymmetric unit 
(How to repeat?) (Motif�: what to repeat?) 

+ = 
Unit cell of BCC lattice 

Sublattice-1 (SL-1) 

Sublattice-2 (SL-2) 

+ = 
Unit cell of BCC lattice 

High T disordered 

Low T ordered 

470ºC 

How do you describe “CRYSTAL”? 
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Real Lattice vs. Reciprocal Lattice 
Student’s FACT:  The concepts of reciprocal lattice, structure factor 
calculations often �strike terror� in the hearts of students! 

q  From the real lattice the reciprocal lattice can be geometrically constructedJ. 
The properties of the reciprocal lattice are �inverse� of the real lattice  

  � planes �far away� in the real crystal are closer to the origin in the reciprocal lattice. 
 
q  A real crystal can be thought of as decoration of a lattice with motif. 
      A reciprocal crystal can be visualized as a Reciprocal Lattice decorated with a     
      motif* of Intensities (structure factor) 
      
          Real Crystal              =  Real Lattice             + Motif  
          Reciprocal Crystal = Reciprocal Lattice + Intensities as Motif* 
 
q  The reciprocal of the �reciprocal lattice� is nothing but the real lattice! 
 
q  Planes in real lattice become points in reciprocal lattice and vice-versa. 

000 

100 

111 

001 

101 

011 

010 

110 
1/a 

a 

BCC crystal  

a 

   000 

  200 

222 

  002 

  101 

  022 

  020 

  110 

Reciprocal Crystal = FCC 

  220  

011 

  202 

100 missing reflection (F = 0) 

22 4 fF =
Weighing factor for each point �motif� 

FCC lattice with Intensities as the motif 

x 
x 

x 

x 
x 

x 

x 

x 
x 

x 

x 

x 

2/a 

FCC crystal 

a

000 

200 

222 

002 022 

020 

Reciprocal Crystal = BCC 

220 

111 

202 

100 missing reflection (F = 0) 

110 missing reflection (F = 0) 

× 

22 16 fF =
Weighing factor for each point �motif� 

BCC lattice with Intensities as the motif 

2/a 

SC crystal  



1/6/18, 10(33 AMThe Reciprocal Lattice | Physics in a Nutshell

Page 4 of 5http://www.physics-in-a-nutshell.com/article/15

(cubic) unit cell but they are not primitive translation vectors. Those reach only the lattice points at the vertices of the

cubic structure but not the ones at the faces.

Instead we can choose the vectors which span a primitive unit cell such as

Here ,  and  denote the unit vectors in -, -, and  direction. If the origin of the coordinate system is chosen to be at

one of the vertices, these vectors point to the lattice points at the neighboured faces.

y

x

z

direct lattice:
fcc with edge length a

reciprocal lattice:
bcc with edge length 4π/a

Fig. 1 - The reciprocal lattice of a fcc lattice with edge length  can be obtained by applying eqs.  -  to

the primitive translation vectors of the fcc lattice. This procedure provides three new primitive translation vectors

which turn out to be the basis of a bcc lattice with edge length .

Now we apply eqs.  -  and obtain:

a ⃗ 1

a ⃗ 2

a ⃗ 3

= ⋅ ( + )a
2 y ̂ z ̂ 

= ⋅ ( + )a
2 x ̂ z ̂ 

= ⋅ ( + ) .a
2 x ̂ y ̂ 

(18)

(19)

(20)

x ̂ y ̂ z ̂ x y z

a (15) (17)

4π
a

(15) (17)

= ⋅ × = ⋅ (− + + )8π
2 3

4π ̂ ̂ ̂ 

FCC in real space 

Real Space 

Reciprocal Space 

Conjugate Variables 

Coordinate(x)                      Time(t) 
 
 
 
 
 
 
 
 

Momentum(p)                    Energy(E)  

Fo
ur

ie
r T

ra
ns

fo
rm

at
io

n 

g(k) = 1
2π!

f (x) • eikx/!
−∞

∞

∫ dx

or

f (x) = 1
2π!

g(k) • eikx/!
−∞

∞

∫ dk

p = !k

E(ω) = 1
2π

Γ(t) • eiωt
−∞

∞

∫ dt

or

Γ(t) = 1
2π

E(ω) • eiωt
−∞

∞

∫ dω

• Conjugate variables to connect real and reciprocal spaces are (x, p) and (E, t). 
• There must be a momentum space equivalent to the unit cell. 
• This is called by “Brillouin zone (BZ)”.  
• First BZ is just like an unit cell of the momentum space, so whole energy space can be  
   projected into the first BZ. 

Real vs. Reciprocal Space 

a
Rclose-packed directions

a

R=0.5a

contains 8 x 1/8 =
           1 atom/unit cell

CN# = 6 CN# = 8 

SC BCC FCC 

a

CN# = 12 

HCP 

(1)  Tend to be densely packed. 
(2) Reasons for dense packing: 

-  Typically, only one element is present, so all atomic radii are the same. 
 Metallic bonding is not directional. 
 Nearest neighbor distances tend to be small in order to lower bond energy. 

- The �electron cloud� shields cores from each other 

(3) Metals have the simplest crystal structures. 

[III]. METALLIC CRYSTAL STRUCTURES 

8 x 1/8 + 1  
=2 atoms/unit cell 

8 x 1/8 + 6x 1/2  
=4 atoms/unit cell 

ex: Cr, W, Fe (α), Ta, M ex: Al, Cu, Au, Pb, Ni, Pt, Ag 
ex: Po(only known) ex: Mg, Ti, Zr,  Hf, Zn  

8 x 1/8   
=1 atoms/unit cell 



Energy difference between FCC and HCP stacking 

A B C 

+ + 

FCC 

= 

A B 

+ 

HCP 

= 

A 

+ 

Shown displaced for clarity 

• Crystals made up of stacking of 2-D hexagonal  close-packed layers             
   differ in entropy by only ~10-3kB per sphere. 
     
• 1st nearest neighbors:   No difference;   
  2nd nearest neighbors:  Tiny but real difference 
  
• Packing density is the same for FCC and HCP  (74%) 
 
• Use these differences for testing ultimate accuracy in computations.  

 T=300˚K  ~10-3kBT=2.6x10-7eV/sphere 
• An ultimate test of accuracy in   
   atomistic computations 
• For 10,000atoms,  ΔE~2.6meV. 
 

J. Am. Chem. SOC. 1984, 106, 3453-3460 

Octahedral vs. Trigonal-Prismatic Coordination and 
Clustering in Transition-Metal Dichalcogenides 

3453 

Miklos Kertesz and Roald Hoffmann* 
Contribution from the Department of Chemistry and Materials Science Center, 
Cornell University, Ithaca. New York 14853. Received July 5 ,  1983 

Abstract: An electronic explanation, based on band calculations, is presented for the following trend in layered, transition-metal 
dichalcogenides-in do complexes the metals prefer to enter octahedral holes in AB layers; then as the electron count increases, 
trigonal-prismatic holes in AA layers are favored; ford' one finds again octahedral structures, albeit distorted in such a way 
as to give chains of metal-metal-bonded diamonds. The symmetry-controlled interactions between chalcogen layers at various 
points in the Brillouin zone are behind the octahedral-trigonal-prismatic choice, and a Jahn-Teller distortion is responsible 
for the particular pattern of clustering in ReSez. 

The transition-metal chalcogenides, MXz, X = S, Se, display 
a characteristic layered structure. Two-dimensional slabs are 
formed by two layers of close-packed chalcogenide atoms sand- 
wiching one metal layer between them. Then these MX2 slabs 
are stacked, with just van der Waals contacts between the slabs.' 
A schematic representation is shown in 1. The multitude of 

t a  4 

1 

structural types that is found in these compounds is a consequence 
of the complex registry of chalcogenide and metal layers relative 
to each other. 

There is one fundamental aspect of the structure that varies 
systematically through the transition series. The two chalcogenide 
layers forming a slab can be stacked directly above each other, 
making trigonal prismatic holes for the metals, 2. Alternatively 

the layers may stagger, forming octahedral holes 3. The 4B 

3 
metals all have octahedral structures. For 5B metals most have 
octahedral structures while some have trigonal-prismatic geom- 
etries, and for 6B the reverse is true. In group 7B we find again 
octahedral structures, albeit distorted ones. Why this variation 
in preferred solid-state geometry? 

The detailed nature of the deformations alluded to in group 
7B dichalcogenides is intriguing. For instance, in the structure 
of ReSez,2 4 the Re atoms slip off from their regular octahedral 

(1) See: Hulliger, F. Struct. Bonding (Berlin) 1968, 4, 83. "Structural 
Chemistry of Layer-type Phases"; Levy, F., Ed.; D. Reidel: Baton, 1976; Vol. 
5.  

0002-786318411506-3453$01.50/0 

4 
sites in such a way as to form approximate Re4 units coupled to 
infinite one-dimensional chains. Is there an electronic reason for 
this deformation? That ReSe, is a semiconductor with a gap of - 1.1 eV394 is suggestive of this. The presence of charge density 
waves in most 5B dichalcogenides is also an indication of insta- 
bilities in the electronic structure of some of these  system^,^^^ 
instabilities tied to certain electron counts. 

These regularities are the subject of this work. In what follows 
we first compare the band structures and total energies of the two 
different kinds of layers, trigonal-prismatic vs. octahedral, using 
a rigid band model; Le., we shall use the very same band structure 
for different compounds across the Periodic Table. The study of 
such an average band structure is necessarily not accurate in its 
details, and for the individual compounds a number of band 
structures have been done which compare more favorably with 
experiment.6 On the other hand, the rigid band model is, as we 
shall see, capable of accounting for the octahedral-trigonal- 
prismatic-octahedral trend as one moves across the transition 
series. 

In the second part of the paper we shall derive the distorted 
ReSe2 structure from the undistorted one. Throughout this work 
we shall employ simple tight-binding energy band structure 
calculations of the extended Hiickel type,7a with some technical 
details listed in the Appendix. 
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Abstract: An electronic explanation, based on band calculations, is presented for the following trend in layered, transition-metal 
dichalcogenides-in do complexes the metals prefer to enter octahedral holes in AB layers; then as the electron count increases, 
trigonal-prismatic holes in AA layers are favored; ford' one finds again octahedral structures, albeit distorted in such a way 
as to give chains of metal-metal-bonded diamonds. The symmetry-controlled interactions between chalcogen layers at various 
points in the Brillouin zone are behind the octahedral-trigonal-prismatic choice, and a Jahn-Teller distortion is responsible 
for the particular pattern of clustering in ReSez. 

The transition-metal chalcogenides, MXz, X = S, Se, display 
a characteristic layered structure. Two-dimensional slabs are 
formed by two layers of close-packed chalcogenide atoms sand- 
wiching one metal layer between them. Then these MX2 slabs 
are stacked, with just van der Waals contacts between the slabs.' 
A schematic representation is shown in 1. The multitude of 

t a  4 

1 

structural types that is found in these compounds is a consequence 
of the complex registry of chalcogenide and metal layers relative 
to each other. 

There is one fundamental aspect of the structure that varies 
systematically through the transition series. The two chalcogenide 
layers forming a slab can be stacked directly above each other, 
making trigonal prismatic holes for the metals, 2. Alternatively 

the layers may stagger, forming octahedral holes 3. The 4B 

3 
metals all have octahedral structures. For 5B metals most have 
octahedral structures while some have trigonal-prismatic geom- 
etries, and for 6B the reverse is true. In group 7B we find again 
octahedral structures, albeit distorted ones. Why this variation 
in preferred solid-state geometry? 

The detailed nature of the deformations alluded to in group 
7B dichalcogenides is intriguing. For instance, in the structure 
of ReSez,2 4 the Re atoms slip off from their regular octahedral 
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experiment.6 On the other hand, the rigid band model is, as we 
shall see, capable of accounting for the octahedral-trigonal- 
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Trigonal-prismatic 
NbS2, TaSe2, MoS2, WSe2  

Octahedral 
TiS2, ZrS2, TiSe2, TaS2 

FCC and HCP stacking:   Where can you see? 
Polytypes in SiC     

  3C-SiC   4H-SiC   6H-SiC   15R-SiC
Band Gap (eV)   2.390   3.265   3.023   2.986
Lattice const (Å)   4.36   3.08/10.05   3.08/15.12   3.08/37.70
me (electron)*/m0   0.68   0.37   0.69   0.53/0.25
mh (hole)*/m0   0.94   0.92
µe(cm2/V•sec)   900   500   300   400
µh(cm2/V•sec)   20   50   50



a
R

aclose-packed directions

a

R=0.5a

contains 8 x 1/8 =
           1 atom/unit cell 8 x 1/8 + 1  

=2 atoms/unit cell 
8 x 1/8 + 6x 1/2  
=4 atoms/unit cell 

CN# = 6 CN# = 8 CN# = 12 

SC BCC FCC 

•  APF ~0.50      0.68       0.74 

[VI]. TYPE OF CERAMIC MATERIALS 
SiC: small 
CaF2: large 
NaCl: large 

Is there any guide line to predict which structure is taken for a given set of pair ions?  

      NaCl                                        CsCl                               ZnS                                       CaF2                                          BaTiO3 
 (Rock salt)                                                  (Zinc-blende)                         (Fluorite )                         (Perovskite) 



(A)n(X)m 
Low EN                    High EN 

Placing        in FCC positions 
Ionic bonding is omni-directional. 

Octahedral interstitial sites Tetrahedral interstitial sites 

• How many octahedral sites seen? 
         Center= 1             Edge= 12 
            100%                     25% 
  Total= 1•100% + 12• 25% = 4 sites/cell 
  Symmetric 

• How many tetrahedral sites seen? 
    Inside =8 
         100%                      
     Total= 8•100% = 8 sites/cell 
     Symmetric 

16 

# of Anions X 
Always=4 
  

Cations M 
in Oct. sites 
Max=4 

Cations  M in 
Tetra. Sites  
Max=8 

Stoichiometry Examples 

4 4 
(100%) 

0 M4X4 
(MX) 

NaCl 
(6:6 CN) 

4 0 8 
(100%) 

M8X4 
(M2X) 

K2O 
Anti-fluoride 

4 0 4 
(50%) 

M4X4 
(MX) 

ZnS 
Zincblende 

4 2 
(50%) 

0 M2X4 
(MX2) 

CaF2 
Fluoride 

4 4 
(100%) 

8 
(100%) 

(M12X4) 
M3X 

So far 
Not known 

4 2 
(50%) 

1 
(12.5%) 

M3X4 MgAl2O4 
Spinel 

* 



•  Coordination # increases with 

Coordination # and Ionic Radii 

2  

r cation 
r anion 

Coord  
# 

< 0.155  

0.155 - 0.225  

0.225 - 0.414 

0.414 - 0.732  

0.732 - 1.0 

3  

4 

6 

8 

linear 

triangular 

tetrahedral 

octahedral 

cubic 

ZnS  
(zinc blende) 

NaCl 
(sodium  
chloride) 

CsCl 
(cesium  
chloride) 

r cation 
r anion 

To form a stable structure, how many anions can surround a cation? 

Is there any guide line to predict which structure is taken for a given set of pair ions?  

 
--  1.54 

1.52  0.68 

1.846  1.02 

2.31  1.38 

 
 2.65  1.70  

Atomic size  Ionic Size 
       (Å)               (Å)  

Atomic size Ionic Size 
       (Å)               (Å)  

 
 

---           1.33 

1.07  1.81 

1.19  1.96 

1.36         2.20 

 

 
 

Cation Anion 

Cation/Anion ratio 
0.68/1.81 ~ 0.37 

1.02/1.81 ~ 0.56 

1.38/1.81 ~ 0.76 
 
 
1.70/1.81 ~ 0.94 

NaCl 
 
 
 
CsCl 

NaCl 

Cs Cl    

r cation 
r anion 



•  What promotes metallic bonding? 
•  What properties are inferred from metallic bonding? 
•  Basis of the electronic structure of metals 
 
 
 
 

UW courses 
Background  MSE 170 (Callister:  Chapter 2, 12, 14)  

   General Chemistry  100 level 
   General Physics  100 level 

 
UG course  MSE 351  Grad courses MSE 510, MSE 518  

 
 

[III] 
MATERIALS AND BONDING: 

Metallic, Covalent and Ionic characters  
 

Ionic ceramics 

Complex salts 

Ionic glasses 

H bonded polymers 

Polymers, Diamond 
Graphite 

Liquid crystals 

Doped semiconductors 
Transition metals  

Alloys 
Alkali metals  

covalent 

ionic metallic 
%IC=1 %IC=0 

Ionic     • Exchange of valence electrons 
     • Electrostatic (culombic) attractive forces 
     • Non-directional nature (favor high symmetric str with high CN# ) 
     • Large bonding energies 

 
Covalent • Shared electrons between adjacent atoms 

     • Directional nature (favor low CN#) 
     • Wide range of bonding energies 

 
Metallic  • Electron cloud / ion core 

     • Delocalized nature 
     • Wide range of bonding energies 

[I]. Nature of the Bond and Band Formation 



General Treatment of Energy Bands in X’tal  
•  A crystal is a solid consisting of a regular and repetitive arrangement of atoms, ions or 

molecules in space. 
•  Positions of the atoms in the crystal are lattice points, forming a crystal lattice. 
•  The distance between the atoms in a crystal is fixed and is termed as lattice constant.  

Variation of potential energy of an e- 

with its distance from the nucleus. 
Potential energy variation of an e- with distance 
between two identical nuclei 

Potential energy variation of an e-  
along a row of atoms in a crystal 

Apply Schrodinger equation 

coordinate 

   Consider Al metal  
Al=1s2 2s2 2p6  3s2 3p1 

V(r) 
V 

core levels 
3s 

3p 

1s 

energy 

2s 
2p a 

n=1 

n=2 

E 1 

E 2 

Isolated atom 
E 3 N=3 

En = h2

2m πa
2 

Ψn = 2
a i sin (2πa  x)

Consider:  Bring two atoms from the distance 

a 
n=1 

n=2 

E 1 

E 2 

Isolated  
atom-1 

a 
n=1 

n=2 

E 1 

E 2 

Isolated  
atom-2 

Then, bring many atoms from the distance 

a 
n=1 

n=2 

E 1 

E 2 

Isolated  
atom-1 

a 
n=1 

n=2 

E 1 

E 2 

Isolated  
atom-2 

a 
n=1 

N=2  • • • • • • • • • 

E 1 

E 2 

Isolated  
atom-3 

a 
n=1 

n=2 

E 1 

E 2 

Isolated  
atom-n 

An intuitive idea of “Atom Bonding” 
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V(r)

ion

V

core levels

Valence electrons 
(mobile) 
 
 
Core electrons 
(does not move) 

 ∂
2Ψ(x)
∂x2

 + 2m
h2

( E - V(x))  Ψ(x) = 0Schrodinger equation 

Approximation of V(x) 

x 

V(x)  

V=0 

V=V0 

Electrons in the Periodic Potential 
A Next Level Approach : The Kronig-Penney Model 

V V V

        loosely bound       bound  tightly bound

width
height

V(x)=0  No bound
i.e. free electrons

           V(x)=0
Completely bound
i.e. electron in box

∞ ∞

E = p
2

2m
=
!2

2m
k 2

E = p
2

2m
=
!2

2m
π
a
⎛

⎝
⎜

⎞

⎠
⎟

2

• k 2

width

height

What happen? 

V=V4V=V3V=V2V=V1
V= 0 V=∞

n=1

n=2

n=3

k= π/a, 2π/a, 3π/a ---

k= any number

k= ???? En = h2

2m πa n 2

Energy

k
        -π/a     0    +π/a

n=1

n=2

E =contineous
  =  h2

2m
 k2

Free e-

k

Energy

E =  h2

2m k2

       -π/a      0    +π/a



π/a

π/a

�π/a

�π/a

Energy

ε

X      

Γ      
X      X      

X      M      

M      

M      = ε

km a x(10) = πa
E max= h 2

2m
(πa)

2

2ε

k<11>

km a x(11)=  2 πa
Emax = h 2

2m
(  2 πa)

2

=2Em a x<10>ε

= 2ε

							kx	-		 0	 π	a	 2	π	a	
3	π	a	π	a	

2	π	a	
3	π	a	 -		 -		

							ky	

-		

π	a	

2	π	a	

3	π	a	

π	a	
2	π	a	3	π	

a	

E

k<10>

Γ      k<10>

k<
01

>

X      

M      

More accurately illustrated 
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[II].Consequence of the Band Formation 

kx 
π/a

ky 

π/a

gap-1	
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X      
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π/a

ky 
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X      
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Na:   1s2 2s2 2p6 3s1 3p 3d 4s---

Cu:   1s2 2s2 2p6  3s2 3p6  3d10 4s1 4p 4d 5s---

ΓΓ

ΓΓ

d-band

3d10

Ef(Na)

Ef(Cu)

EF

EF

Example(1):  Group IA, IB metals 

EF

Metals                          Semimetals                        Insulators                 Semiconductors 

Filled 
Valence 

band 

Empty 
Conduction 

band 

Band gap 

Filled 
Valence 

band 

Empty 
Conduction 

band 

Band gap 

Silicon (Si) Gallium Nitride (GaN)

Γ Γ Γ Γ

In-direct band gap SC Direct band gap SC

Examples (4):  Semiconducting and Insulating Materials 

VB 

CB 

Gap 



ΓΓ

Na:			1s2	2s2	2p6	3s1	3p	3d	4s---0	

3s	 3s	

3p	
3p	

Energy

DOS

DOS=																															=	
dη
dE

occupied

Un-
occupied

Uncertainty	of	momentum	in	
											x-direcCon:					Δpx~h/a	

		y-direcCon:					Δpy~h/a	
		x-direcCon:					Δpz~h/a	

Heisenberg’s uncertainty principle
      Δx•Δp~h

                  

Total	#	of	sites:	η

V(r)

ion

V

core levels

3s	

1s2	2s2	2p6	

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The	uncertainty	in	the	momentum	per	e-		

How	many	e-?								~1022	e-/cm3		

n=1					n=4																											n~500				-----------		n~1022		
?

~	Uncertainty of e- location (Δx) =   a
a	

  η = Volumne of "momentum sphere"
momentum element

 = 
4
3

 π p3

h
a

3
  =  π

6
 2ma2

πh2

3
2 •E

3
2 P

Px

Py

Pz

Px

Px

Py
Py

Pz

Pz

Density	of	States	(DOS)	: g(E)	
	
	#	of	events	�per�	energy	

	 															

Z(E) = dη
dE

=
d
dE ( ).....( )g(E)
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T=0K	

Fermi	Energy	Ef	
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At T=0K E 

DOS 

Z(E) = V
4π 2

2m
!2

!

"
#

$

%
&
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• E

 Temperature  effect in e-occupation 

F(E)

E
Ef 0 

1.0 

F(E)

E

T = 0K 

Ef 0 

1.0 

0.5 

T=T1 

T=T1 

T=T2 

T=T2 

Fermi-Dirac Distribution 

Paul Adrien Mourice Dirac 
(1902-1984) received the  
Nobel Prize 1933 (sheared  
With Driwin Schrodinger). 
 

g 

N*

g(E)

N* = N(E)dE 

= 2 • g(E) •F (E)dE
0

∞

∫

= 2 • g(E) •1dE
0

EF

∫

EF = (3π
2N ')2 3 • !

2

2m

Solve	for	the	Fermi-energy		

N ' = N *
V

=
Max#of .electron

Volumn
= #of .electron / unit.volume

g(E)

g(E)

The Fermi Energy 



IV 

HETEROPOLAR  BONDING MATERIALS  
I[B] II[B] III IV V VI VII 

B C N O F 

Al Si P S Cl 

Cu Zn Ga Ge As Se Br 

Cd In Sn Sb Te I 

 0.88       0.77         0.70         0.66 
 
  1.26       1.17       1.10        1.02 
           

1.35            1.31           1.20           1.22            1.18           1.14           1.11 
 

                   1.48         1.44            1.40             1.31          1.32 

 
   2.0           2.5          3.0           3.5         4.0 
   
    1.5          1.8          2.1          2.5             3.0    

 
  1.9              1.6             1.8              1.8              2.0             2.4             2.8    

                    
                    1.7             1.7               1.8              1.9              2.1         2.5 

1.22+1.22  1.26+1.18  1.31+1.14               1.35+1.11 
=2.44              =2.44               =2.45                      =2.46  (Å)

  

Interatomic distance 

I-VII 

III-V 
II-VI 

  Ge         GaAs             ZnSe           CuBr   
 [IV]       [III-V]        [II-VI]       [I-VII] 
 

(isoelectric system) 
Diamond        Zinc-Blende     Zinc-Blende       Rock-Salt 

1.8-1.8             2.0-1.8  2.4-1.6        2.8-1.9 
=0.0              =0.2              =0.8                     =0.9 Electronegativity 

Covaleznt                                          Ionic 

Ge	

GaAs	

ZnSe	

V(r)
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V

core levels
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dE

Total	#	of	sites:	η
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Born-Lande 	

Born-Mayer 	

 
• Lattice energy, Ulattice , is defined as the enthalpy required to form one   
  mole of crystalline solid in its standard state from the gaseous ions 
 

 Example:    Na+(g) + Cl-(g)     NaCl(s)   Ulattice = -786.8kJ/mole 
         This reaction is exothermic (spontaneously happen) 

 
• How do you find Ulattice? 
   
 
 
 

Want	to	know	

Ulattice?

Na+(g) +  Cl-(g) 	

Thermodynamics data (per mole)  

NaCl-(s) 	
Ulattice=?

lattice	+	

Ulattice= - (                               )
          = -(                                                                               )
          =  -          /mole  

+
+	

Born-Haber Cycle for NaCl	



•  Introduction of volume-based thermodynamics approach 
•  Formula unit volume and mean average bonding volume 
•  Significance of the lattice energy 
•  Material’s fundamental properties inferred from the lattice energy 
 
 
 

 
 

[IV] 
MATERIAL’S FUNDAMENTAL 

PROPERTIES 
 
 

Background  MSE 170 (Callister:  Chapter 2, 12, 14)  
   General Chemistry  100/200 level 
   General Physics  100/200 level 

 
UG courses   MSE 322   MSE 351    
Grad courses  MSE 510   MSE 560  

 
A Volume-Based Thermodynamics (VBT) approach 

 	

VOLUME-BASED THERMODYNAMICS (VBT) APPROACH 
“Predictive Thermodynamics for Condensed Phases” 

•  For hypothetical materials or materials under development, experimental   
   data are often unavailable, or necessarily impossible to obtain. 
 
• Modulus of elasticity, thermal expansion coefficient, melting temperature   
  are three material’s fundamental properties directly inferred from the lattice  
  energy of the condensed phases. 
 
 
 
 
 
 
 
 
 
 
  
• Original work done by Classer and Jenkins* is a method applied to both    
  ionic and covalent solids, principally via “formula unit volumes”, providing  
  a new thermo-dynamic tool for such assessment.  
 

 
Ulattice = M•U0  
    M: Madelung constant  

Modulus of Elasticity =Slope of force curve 	

Thermal Expansion=Deviation of equil. 
                                        distance by heat	



 
(1)  Formula unit (fU) volume (Vm) 
 

         
        

(2) Mean average bonding volume (q) 
 
        

q = Vm
Nm

Wm:  Formula weight of material 
 ρ    :  Density of material 

Vm: Formula unit volume (fU) 
Nm: # of atoms (in 1-fU)   

Example:   MgAl2O4  (Spinel)        WMgAl2O4= 142.27g/mole                    
        ρMgAl2O4 = 3.61g/cm3 
        VMgAl2O4 = 39.4 cm3 per mole 
         q = VMgAl2O4/(1+2+4)=5.6 (cm3/fU-atom) 

 
    

 
 

     
 

  
	

Mean average “bonding volume”  
of atom in 1-fU of material.  q	7•	

4(MgAl2O4) 
	

  fU-Volume equivalent to 
  one MgAl2O4 (7 atoms) 
	

Vm =
Wm

ρ

Vm =
Wm

ρ

Procedure  

4 

Summary of q values of various materials  
(1)  A “q” value varies from material to material, but many materials show  

q~6.5 cm3/atom-fU (i.e., per atom in 1-fU of material) except a few 
cases.  

 
(2)  This means:   Mean bonding volume of atom in 1-fU of the material  

            (unit:cm3/atom-fU) is similar for all materials.  
 
(3)  Material specific values of “q”. 

  Multivalent Oxides   q~6.5-7.5cm3/atom-fU 
  Monovalent Oxides   q~11.5cm3/atom-fU 
  Nitrides     q~6.5 cm3/atom-fU 
  Carbides     q~6.5 cm3/atom-fU 
  Fluorides     q~7.4+1.2(20%) cm3/atom-fU 
  Hydro-oxides    q~9.1+1.2(13%) cm3/atom-fU 
  Chlorides     q~13.3+1.8(14%) cm3/atom-fU 

 
(4)  Material’s properties (such as E, α, Cp etc) can be expressed in terms of q.   
       (to be discussed in later chapters)   
 
 

  
  

(A)n(B)m 
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[II].  LATTICE ENERGY, Ulattice 
Three recent papers   1.  Jenkins, et al., Inorganic Chemistry 1999, 38, 3609-3620. 

        2.  Glasser, et al., J. Am. Chem. Soc. 2000,  122, 632-638. 
        3.  Kaya and Kaya, Inorganic Chemistry 2015, 54(17), 8207-8213. 

(1).  Started with either Born-Lande or  
        Kapustinskii’s equation for lattice energy.       
 

 
(2).  Parameterized the equation in a form of:  

 
(3).  Ionic separation <r> is evaluated through formula volume (Vm) as <r> =(Vm)1/3/2 
  
(4).  Introduction of “chemical hardness” (ref. 3), then developed parameterized equation 
         in a form of:  

 
 

 This form can be applied to materials with Ulattice<5000kJ/mole very accurately. 
 

Ulattice = 2I
α
Vm
1/3 +β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ulattice = 2I a
ηM

Vm
1/3 + b

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ulattice = −
1.202•105νZ1Z2

r+ + r−
1− 34.5
r+ + r−

⎛

⎝
⎜

⎞

⎠
⎟

where  α and β are empirical consts	

Ulattice = −A
MZ1Z2
4πε0r0

1− 1
n

⎛

⎝
⎜

⎞

⎠
⎟

Recent progress on estimating  Ulattice from Vm and ionic separation 

Summary of three papers:	

Estimation of Ulattice from Vm and ionic separation 
Three recent papers 
1.  Jenkins, et al., Inorganic Chemistry 1999, 38, 3609-3620. 
2.  Glasser, et al., J. Am. Chem. Soc. 2000,  122, 632-638. 
3.  Kaya and Kaya, Inorganic Chemistry 2015, 54(17), 8207-8213. 

Example:   MgAl2O4  (Spinel)       
    

 
 

     
 

  
	

4(MgAl2O4) 
	

  1 fU-Volume equivalent  
  to one MgAl2O4 (7 atoms) 
	

Vm =
Wm

ρ

r =
Vm3

2

r

Mean average “bonding volume”  
of atom in 1-fU of material. 

 q	7•	

Ulattice = −A
MZ1Z2
4πε0r0

1− 1
n

⎛

⎝
⎜

⎞

⎠
⎟

M 

                Parameterized equation for each material 

Ulattice = 2I
α
Vm
1/3 +β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ulattice = 2I a
ηM

Vm
1/3 + b

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(Ref. 1)	 (Ref. 2)	

More ionic  (less poralization) 

More covalent  (more poralization) 

Higher chemical hardness (ηΜ)   or large  ηΜ  value   

Lower chemical hardness (ηΜ)   or low  ηΜ  value  

Examples  
ηAlF=8.59 

ηAlCl=7.35	
	
ηAlBr=5.90	
	

(Ref. 2)	

Born-Lande eq. for Ulattice	

ηΜ = “Chemical hardness”   A measure of the resistance toward electron cloud polarization 
                                                          or deformation of chemical species 
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Correlation between  

Lattice energy(Ulattice) & Modulus of Elasticity (E) 
(Volume-Based Thermodynamics (VBT) approach) 

 

Modulus of elasticity: 

∴ Vm: Formula unit (fU) volume 
Nm: # of atoms in 1-fU. E = const •Ulattice

Vm

∝
1
r0( )4

≡
1
r0
•
1
r0( )3

∝
1

Vm( )1/3
•
1
Vm

At equilibrium position: 

Go through derivation,  
then you get: 

Young’s modulus: 

(Fr=ro)

dF

≡
Ulattice

Vm
(Ref. 1)	

independently: then, for MX (1:1) salts (i.e. uni-univalent), R
) 117.3 kJ mol-1 nm and ! ) 51.9 kJ mol-1 with a correlation
coefficient of R ) 0.94 (cf. 116.4 kJ mol-1 nm and 55 kJ mol-1
from the Bartlett equation (1) for the system of MX salts); for
MX2 (1:2) salts (i.e. bivalent cation-univalent anion), R ) 133.5
kJ mol-1 nm and ! ) 60.9 kJ mol-1 with a correlation
coefficient R ) 0.83 (based on data for the salts in Table 2);
and for M2X (2:1) salts (i.e. univalent cation-bivalent anion;
Figure 1), R ) 165.3 kJ mol-1 nm and ! ) -29.8 kJ mol-1
with a correlation coefficient of R ) 0.95 (based on data for
the salts in Table 3).
It will be noted that the values for R are reasonably consistent

(varying by about 20% about the system value) while the values
for ! vary widely, as might be expected for linear correlations
of this kind, the gradients being better defined than the
intercepts.
Ion Parameters. In view of the satisfactory correlation

coefficients obtained, these relationships can be utilized in a
number of ways. First, given the molecular (formula unit)

volume, Vsusually obtained from unit cell parameters, using
eq 4:

where a, b, and c are the unit cell edges (in nm), R, !, and γ
are the unit cell angles (in degs)sand Z (the number of
molecules per unit cell), the lattice potential energy, UPOT, can
be established for the salt by using the V -1/3 dependence via
our new equation, eq 3. An example of the estimation of the
lattice potential energy from unit cell parameters is given for
[I3+][AlCl4-] later in this section. Second, we can use the
relationships to estimate the combined radii (ra + rc) of salts,
via the Kapustinskii equation with lattice enthalpy, as estimated
from our eq 3, as the input, which can then, in turn, be used to
predict individual ion radii. A few typical values of ion radii
are given in Table 1 (along with their assigned errors and citing
previously assigned10 radii where possible). Further extensive
tabulations (for over 400 ions) are given elsewhere for ther-
mochemical radii of ions of varying complexity.8 Third,
considering the fact that our effective close-packing ion volumes
are additive, since for a salt, MpXq

then, providing we can define the effective volume of the anion,
V- (cation, V+), the corresponding effective volume of the
cation, V+ (anion, V-) can be obtained. For the purposes of
initial calibration of the effective single ion volumes we face a
classical problem of physical chemistry: that of separating an
additive property into its single ion components.42 We have
adopted a simple procedure, paralleling that followed by
Kapustinskii in his original assignment of thermochemical radii.
Namely, we used the Goldschmidt radii,43 of alkali metal cations,
r+ (which can be found tabulated in ref 2) to define the
corresponding effective cation volumes, V+, taking them to be
equal to 4/3πr+3. The results of such an exercise for alkali metal
and alkaline earth ions are listed in Table 4. The volume of the
anion is then estimated by subtracting the appropriate number
of cation volumes from the molecular volume, V, of the salt
containing an alkali metal cation, the corresponding remaining
effective single ion volumes defined accordingly. This approach,
as was alluded to earlier, assigns any “free space” in the crystal
structure44 to the anion volumes, V-.

(42) See for example discussion in Jenkins, H. D. B.; Pritchett, M. S. F. J.
Chem. Soc., Faraday Trans 1 1984, 80, 721.

(43) Goldschmidt, V. M. Skrifter Norske Videnskaps-Akad. Oslo, I, Mat.-
Naturn. Kl, 1926.

(44) We investigated several alternative approaches to partitioning the
effective close packing molecular (formula unit) volume, V, into its
ion additive components, V+ and V-. Specifically we tried to identify
a salt for which V+ ≈ V- but such attempts led to results which did
not appear to be valid. For example, negative volumes emerged for
ions such as Li+.

Figure 1. Plot of the correlation between the lattice potential energy,
UPOT/kJ mol-1, and the inverse cubic root molecular volume, V -1/3/
nm: for the M2X salts, [M ) alkali metal], with X ) S2-, CO32-,
SO42-, MoCl62-, etc.

Table 3. Lattice Potential Energies and Cube Roots of Molecular
Volumes for M2X Salts

UPOT (kJ mol-1) from refs 10 and 40

M2X salt
extended
calculation

estimated
Kapustinskii V1/3/nm

Cs2CoCl4 1391 1398 0.6157
Cs2CuCl4 1393 1392 0.6126
Cs2GeCl6 1375 0.6444
Cs2GeF6 1573 1559 0.5675
Cs2MoCl6 1347 1344 0.6470
Cs2SO4 1596 0.5193
Cs2ZnBr4 1454 1453 0.6445
Cs2ZnCl4 1429 1491 0.6157
K2S 1979 2008 0.4637
K2MoCl6 1418 1428 0.6205
K2PtCl4 1574 1571 0.5881
K2SO4 1700 0.4770
Li2CO3 2523 2462 0.3832
Li2S 2464 0.3603
Li2SO4 2229 0.4530
Na2CO3 2301 2309 0.4079
Na2S 2192 2220 0.4119
Na2SO4 1827 0.4279
Rb2MoCl6 1399 1384 0.6293
Rb2S 1929 1925 0.4832
Rb2SO4 1636 0.4954

Table 4. Volumes V+ Generated using Goldschmidt Radii for
Alkali Metal and Alkaline Earth Cations

cation V+/nm3 cation V+/nm3

Li+ 0.00199 Mg2+ 0.00199
Na+ 0.00394 Ca2+ 0.00499
K+ 0.00986 Sr2+ 0.00858
Rb+ 0.01386 Ba2+ 0.01225
Cs+ 0.01882

V )

[abc"(1 - cos2R - cos2! - cos2γ + 2 cos R cos ! cos γ)]/Z
(4)

V ) pV+ + qV- (5)
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Ulattice ∝
1

Vm( )1/3

If you  know the material you are working, Ulattice and Vm are known. 

•	

Estimation of the Modulus of Elasticity (E) 
For Known Materials 

E = 0.58 •Ulattice

Vm

Ulattice /Vm (GPa)

E = const •Ulattice

Vm



Experimental facts about E vs Tm 

•    E and Tm have different dimensions:       

•    Materials data indicate:                   or E =ζTmE∝Tm

E =ζTm ∝
(heat − capacity)

(volume)
•Tm =

Cp

Vm
•Tm

ζ

ζ[ ] ≡
E[ ]
Tm[ ]

=

force( )
m2

˚K

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Kg • m
sec2

m2

˚K

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Kg
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⎣⎢
⎤
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Kg •m2
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m3 •˚K

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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≡
(energy)

(volume) • (temp)
≡
(heat − capacity)

(volume)

Young’s		
Modulus	
	
	
	
	
Mel.ng		
temperature	

							Cp	
	
	
	
Formula	volume	

Dimensional analysis of    

∴E∝ Tm
q

E =ζTm ∝
(heat − capacity)

(volume)
•Tm =

Cp

Vm
•Tm

E = const •
CpTm
Vm

= const • 3NRTm
Vm

= const • 3RTmVm
N

= const • 3RTm
q
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