平成 30 年度

(April 2018 – March 2019)

東北大学理学部

Faculty of Science Tohoku University

Course	Semester/Credits	Instructor	Affiliation
Introduction to Basic Chemistry (基礎化学序論)	2 Semester 2 Credits	稲葉 謙次 (Kenji INABA)	IMRAM, Laboratory of Biomolecular Structure

Course code/number : SCH-OCH201E

Course Title: ntroduction to Basic Chemistry (基礎化学序論)

Purpose/Abstract:

This class is offered to freshmen enrolled in the AMC course. Fundamental knowledge and cutting-edge research in chemistry and materials science will be presented in the form of seminars in each laboratory. Throughout these seminars, the differences in high school-level and college-level chemistry will be emphasized, and students will be given motivation for their future studies.

Goal :

Understanding of the basic fields of university-level chemistry spread over a cross-section of each field, such as organic chemistry, inorganic chemistry, analytical chemistry, biochemistry and physical chemistry.

Contents :

Following the schedule distributed during the initial class, students will visit laboratories to attend seminars and be introduced to laboratory facilities and learn the importance of basic chemistry as well as cutting-edge research.

Books required/referenced :

Indicated by each instructor

Preparation and review :

Indicated by each instructor

Grading :

Class attendance and reports

Remarks :

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry I (専門基礎化学 I)	3 Semester 2 Credits	(Kiyoshi UEDA) 上田 潔 奥西 みさき (Misaki OKUNISHI)	Institute of Multidisciplinary Research for Advanced Materials Laboratory of Electron and Molecular Dynamics

Course code/number : SCH-PCH211E

Course Title : Special Class in Basic Chemistry I

Purpose/Abstract :

In this lecture, we try to understand fundamentals of the quantum mechanics and quantum chemistry that are required for advanced chemistry courses. Starting with a lecture of the early quantum mechanics, we learn how to formulate the Schrödinger equation, which is the basic equation of quantum mechanics. The basic concept of wavefunctions (= solutions of the Schrödinger equations) are presented to understand the wave nature of particles in atomic scale. Then the simple models for vibrational and rotational motions of molecules, and the electronic state of the hydrogen atom are treated quantum mechanically as the prototypes for more complex atoms and molecules.

Goal :

Gain the skill to solve simple Schrödinger equations and a problem of a particle in a box. Extend it to solve quantum mechanical problems of the harmonic oscillator and the rigid rotator of diatomic molecules, and the electronic motion of the hydrogen atom.

Contents :

- We will cover the following themes.
 - 1. Outline and introduction to elementally physical chemistry
 - 2. Dawn of the quantum theory
 - 3. The classical wave equation
 - The Schrödinger equation 4 5. A particle in a box

 - 6. General Principles of quantum mechanics The harmonic oscillator and the rigid rotator 7.
 - 8 The hydrogen atom

Books required/referenced :

Textbook: Physical Chemistry - a molecular approach by D.A.McQuarrie and J.D.Simon

Preparation and review :

Read the text book for preparation.

Grading :

Attendance + Mid - term examination + Final examination (Additional examination) Remarks :

Course	Semester/Credits	Instructor	Affiliation		
Special Class in Basic Chemistry Ⅱ (専門基礎化学Ⅱ)	3 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials		
Course code/number : SC Course Title : Special Class Purpose/Abstract : This course builds from the to the relationship between predict the properties from the Goal : The goal of this course is will be able to understand the Contents : Below is a tentative sche discretion of the professor. 1. Elemental Origin and 2. Quantum Mechanics, 3. Periodic Table Genera 4. Covalent Bonding, Lee 5. Atoms, Molecule, poly 6. Valence bonding meth 7. Molecular structure a 8. Symmetry and group 9. Group theory molecul 10. Crystal structure (1) 11. Crystal structure (2) 12. Ionic solids 13. Metal and metal like 14. Electric conduction, se	in Basic Chemistry II (A the basic electronic structur the structure and prope the electronic and physical to learn the basics of elec- te relationship among those dule and content for the Atomic Composition al Properties and Periodic wis Structure, Molecular G atomic molecules nod, hybrid orbital, π bon and polarity theory ar orbital, application to a emiconductor, supercondu- ed :	ure of atoms and molecules t rties of compounds.It is my al structures of relatively sin stronic structures of atoms a se topics and the properties a course. The schedule may ity, Magnetic Properties Drbital Method d nolecular vibration	nd molecules and bonding. In addition, students		
Preparation and review : You should be reading the chapters and trying problems not assigned by the professor.					
Class attendance, homewo	Grading : Class attendance, homework, and two exams				
Remarks : breedlove@m.tohoku.ac.jp					

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry Ⅲ (専門基礎化学Ⅲ)	3 Semester 2 Credits		Laboratory of Nanobio Functional Materials/Chemical Biology & Supramolecular Photochirogenesis

Course code/number : SCH-ORG211E

Course Title : Basic Organic Chemistry I

Purpose/Abstract:

Objective and Summary of Class :

Students will learn how to understand organic chemical reactions. The purpose is to learn the reactions of basic organic compounds, such as alkanes, alkenes, and organic halides, via the flow of electrons shown using arrows.

- (1) Structure and Bonding. (2) Organic Compounds
- (3) Stereochemistry (4) Alkanes (6) Alkynes
- (5) Alkenes

Intended for those students majoring in organic chemistry, this class will provide the broad fundamentals of organic chemistry needed to become a chemist. It is desirable to continue taking Chemistry C, Special Class in Basic Chemistry II, and General Organic Chemistry A, B and C as well as to take Exercises in Organic Chemistry A and Organic Chemistry I A and II A (class concerning spectroscopy)

Goal :

- · To understand chemical bonds and structure of organic compounds.
- · To understand streochemisry.
- · To understand the main reactions of alkanes via electron flow arrows.
- · To understand the main reactions of alkenes via electron flow arrows.
- · To understand the main reactions of alkynes via electron flow arrows.

Contents :

During the class, chapters 1-8 of "Organic Chemistry, 8th ed." by McMurry will be studied.

Books required/referenced :

Organic Chemistry 9th ed." by John McMurry

Preparation and review :

Preparation / review / tasks are instructed during lecture.

Grading :

Quiz and reports and a final exam. Quizzes will be given at the beginning of classes. Remarks :

The office hours are basically from 10 am to 5 pm, from Monday to Friday.

Course	Semester/Credits	Instructor	Affiliation
Special Class in Basic Chemistry Ⅳ (専門基礎化学Ⅳ)	3 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials
equilibria, oxidation and re Goal : Students will gain an u their future studies. Contents : Contents and Schedule: 1. Chemical equilibr 2. Acid and bases 3. Acid-base equilib 4. Oxidation and rec	ass in Basic Chemistry I general analytical and eduction reactions, elect inderstanding in basic t ria duction bordination complexes a ymmetry nced : n ed. eneral Chemistry 9th ed y : oblems and two exams	inorganic chemistry, suc crochemistry, etc. topics in analytical and in and solubility	ch as equilibria, acids and bases, acid-base organic chemistries, which will aid them in

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry A (物理化学概論A)	5 Semester 2 Credits	米田 忠弘 (Tadahiro KOMEDA)	Advanced Scanning Probe Microscopy, IMRAM (Tagen)

Course code/number : SCH-PCH221E

Course Title : Thermodynamics and statistical physics

Purpose/Abstract :

In this course, we study thermodynamics, statistical mechanics, and the properties of many-body systems at finite temperature. The course is intended for the understanding both of chemical physical phenomena appeared in material science. We will cover the classical thermodynamics, the relationship between the macroscopic phenomena and the microscopic properties (statistical mechanics), and the application of these ideas to the observed states of actual materials.

Goal:

Chemical energetics; entropy; work and reversibility; phase equilibria; solution properties; a statistical approach to chemical energetics and equilibria Introduction to quantum chemistry:- applications to the bonding and structure of molecules, materials and nanoparticles. Molecular properties and reactivity

Contents :

The following topics will be discussed, each of which takes two weeks.

Properties of ideal gases

Statistical thermodynamics principles Statistical thermodynamics principles

Entropy accounting principles

Free-energy functions & the chemical potential

Application to multi-phase systems

Application to solids, surfaces & nanostructures

Fuel cell

Topics like as chemical reaction of fuel cells and spin ordering of magnetic materials are both included.

Books required/referenced :

Hand out materials based on Physical Chemistry - molecular approach by D.A. McQuarrie and J.D. Simon

Preparation and review :

Homework quiz are assigned during class.

Grading :

Midterm and Final Examination, plus reports of several classes, and the attendance

Course	Semester/Credits	Instructor	Affiliation		
General Physical Chemistry B (物理化学概論B)	4 Semester 2 Credits	組頭 広志 (Hiroshi KUMIGASHIR/	Laboratory of Bioinspired Synthetic Chemistry		
Course code/number : SCH-PCH222E Course Title : General Physical Chemistry B Purpose/Abstract : The course deals with the introduction to the principles of quantum mechanics and their application to chemical systems. Topics include the formalism and mathematical tools of quantum mechanics; approximate methods; atomic structure: the chemical bond, valence bond; and molecular orbital theory.					
theory; (2) explain the atomic	structures and their spec	troscopic properties; (3) unde	ds, including the variational method and perturbation rstand the quantum mechanical description of the ital theory.		
 chemical bond and molecular structures; (4) be familiar with the concept of molecular orbital theory. Contents : The contents and schedule are as shown in below: 1) Introduction 2) Approximation method in quantum mechanics: Variational method 3) Approximation method in quantum mechanics: Perturbation theory 4) Structure of the helium atom 5) Multiple electron atoms and the Pauli principle 6) Multiple electron atoms: term symbol and atomic spectra 7) Chemical bond: The hydrogen molecular ion 8) Chemical bond: The structure of diatomic molecules 10) Bonding in polyatomic molecules 11) Hybridization and molecular structure 12) Conjugated pi-electron systems: The Hückel molecular orbital method 13) Computational quantum chemistry 					
Books required/referenced : Physical Chemistry - a molecular approach by D.A. McQuarrie and J. D. Simon Preparation and review :					
The session time is limited and therefore self-directed learning is important. Students are required to prepare and review for each class. Grading: Students are evaluated on their class attendance, the midterm report and the final examination.					
Remarks : Questions are accepted at any time (after class, in particular).					

Questions are accepted at any time (after class, in particular).

Course	Semester/Credits	Instructor	Affiliation
General Physical Chemistry C (物理化学概論C)	5 Semester 2 Credits	荒木 保幸 (Yasuyuki ARAKI)	Institute of Multidisciplinary Research for Advanced Materials

Course code/number : SCH-PCH223E

Course Title : General Physical Chemistry C

Purpose/Abstract :

Chemical kinetics, also known as reaction kinetics, is the study of the speed of chemical processes.

A study of chemical kinetics includes investigations of how experimental conditions can influence on the speed of a chemical reaction. In this class, appropriate construction of mathematical models that can describe the characteristics of a chemical reaction will be discussed. Concept of "order of reaction" and "how to determine order of reaction along with integrated rate laws" are also the most important topics of this class. Moreover, the enzymatic reaction kinetics will be introduced to understand the specific examples of chemical reaction rate determination. Through the trial to solve the problems in the textbook, the establishment of the knowledge will be achieved.

Goal:

The main goal is to teach principles of reaction kinetics and catalysis. Topics covered include the laws and theories governing reaction rates and mechanisms in gas, condensed phase and at the solid-liquid interface. Modern experimental approaches to study kinetics in complex chemical and biochemical systems and analysis of experimental data will be introduced. Computational approaches to estimate rates of chemical reactions and study the mechanism of catalysis will be discussed.

Contents :

Contents and Progress Schedule of the Class:

In this class, the contents from Chapter 27 to Chapter 31 of the textbook (Physical Chemistry - a molecular approach by D. A. McQuarrie and J.D. Simon) will be discussed.

- Chapter 27 / The Kinetic Theory of Gases Chapter 28 / Chemical Kinetics : Rate Laws Chapter 29 / Chemical Kinetics : Reaction Mechanisms Chapter 30 / Gas-phase Reaction Dynamics Chapter 31 / Solid and Surface Chemistry

Books required/referenced :

Textbook and References: Physical Chemistry - a molecular approach by D. A. McQuarrie and J.D. Simon

Preparation and review 3

Students who joins in this class is expected to keep prep.

Grading :

Record and Evaluation Method:

Class attendance (perfect attendance is 60 points), reports (perfect submission is 20 points) and scores of final examinations (full score is 20 points) are totally evaluated.

Person who gains over 80 ponts gets AA score.

Course	Semester/Credits	Instructor	Affiliation			
General Physical Chemistry D (物理化学概論D)	5 Semester 2 Credits	髙岡 毅 (Takeshi TAKAOKA)	Advanced Scanning Probe Microscopy 走査プローブ計測技術研究分野			
Course code/number :	SCH-PCH224E					
Course Title : Principles	of spectroscopic metho	ds in physical chemistry				
Purpose/Abstract : Starting from a lecture of chemistry.	of the basic of spectroso	copy, we try to survey mo	odem spectroscopic methods used in physical			
Goal : Gain the skill for the analysis of molecules, focusing on the understanding and application to the spectroscopic methods. We cover wide area of the spectroscopic methods, including optical absorprion/emission spectroscopy and magnetic resonance spectroscopy.						
2) Magnetic Resonance						
	Books required/referenced : Textbook: Physical Chemistry - a molecular approach by D. A. McQuanie and J.D.Simon					
Preparation and review	Preparation and review :					
Grading : Score: Attendance + Mid-term exam + Final exam						
Email: takaoka@tagen.t						

Course	Semester/Credits	Instructor (Tadabiro KOMEDA)	Affiliation
Exercises in Physical Chemistry A (物理化学演習A)	4 Semester 1 Credits	(Tadanii to KOMEDA) 米田 忠弘 高岡 毅 (Takeshi TAKAOKA)	Advanced Scanning Probe Microscopy & Laboratories at Katahira Campus.

Course code/number : SCH-PCH251E

Course Title : Exercises of problems and topics in physical chemistry A

Purpose/Abstract :

Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.

Goal :

In this course, we try to solve problems related to the issues discussed in AMC courses. The goal of this class is to require skills through these process.

Contents :

Part of this class will go along with 'Problems ands solutions to accompany Physical Chemistry - molecular approach by D.A. McQuarrie and J.D. Simon' in which the problems shown in each chapter of the text book are analyzed.

Books required/referenced :

Indicated by each instructor.

Preparation and review :

Homework quiz are assigned during class.

Grading :

class attendance, reports and scores of emaminations

Course	Semester/Credits	Instructor	Affiliation	
Exercises in Physical Chemistry B (物理化学演習B)	5 Semester 1 Credits	米田 忠弘 (Tadahiro KOMEDA)	Advanced Scanning Probe Microscopy & Laboratories at Katahira Campus.	
Course code/number : SCH-PCH252E				

Course Title : Exercises of problems and topics in physical chemistry B

Purpose/Abstract:

Through lectures of physical chemistry classes, fundamentals of physical and mathematical knowledge will be lectured. However, it is also necessary to solve actual problems in physical chemistry issues. Topics and exercises in special cases will be extended.

Goal:

In this course, we try to solve problems related to the issues discussed in AMC courses. The goal of this class is to require skills through these process.

Contents :

Part of this class will go along with 'Problems ands solutions to accompany Physical Chemistry - molecular approach by D.A. McQuarrie and J.D. Simon' in which the problems shown in each chapter of the text book are analyzed.

Books required/referenced :

indicated by each instructor

Preparation and review :

Homework quiz are assigned during class.

Grading :

class attendance, reports and scores of emaminations

Remarks :

Course	Semester/Credits	Instructor	Affiliation
General Inorganic and Analytical Chemistry A (無機分析化学概論A)	4 Semester 2 Credits	宇田 聡 (Satoshi UDA)	Laboratory of Crystal Chemistry

Course code/number : SCH-INO221E

Course Title: General Inorganic and Analytical Chemistry A 無機分析化学概論A

Purpose/Abstract

Thermodynamics is a powerful tool to understand the equilibrium phase relationship that is needed for materials processing including materials synthesis and growth from the conventional to the most advanced one. It also gives an insight of the nonequilibrium process in terms of the deviation from the equilibrium state. It should be also noted that thermodynamics is a powerful mean to prove your developing theory

Although thermodynamics is one of the classic academics, it is not easy to learn. This is because the 'practical state' is often far different from the 'ideal' and only ideal-gas case with mathematical expressions are simply demonstrated in teaching without showing its applications to the 'real world'. In this class, students will have an exciting learning experience of the thermodynamics through its practical applications with simple math forms. In addition, this class is linked to the 'Exercises in Inorganic and Analytical Chemistry A' and students will learn about the practical use of thermodynamics by solving a few kinds of problems associated with chemical equilibrium or chemical reactions. Goal :

· Learn 1st law and 2nd law of Thermodynamics

 \cdot Learn different kinds of free energy and how they are related by the Legendre transformation.

· Learn the basic concepts of Gibbs free energy, partial molar quantity. Learn the derivation of chemical potentials to understand the phase relationship.

· Learn how to read equilibrium phase diagrams. · To get the idea how to apply the thermodynamics to phase equilibria and reaction process in materials synthesis and growth process.

Contents :

- . Scope of Thermodynamics
- II. 1st law and 2nd law of Thermodynamics
- Equilibrium Ш. IV.
- Chemical Potentials and Activities \mathbf{V} Phase Diagrams
- VI. The Kinetics of Phase Transformations

Books required/referenced 3

Handout will be given before the class begins.

Preparation and review :

Assignments will be given.

Grading

The results of class attendance, quizes and examination will be used for evaluation.

Remarks : Contact address: uda@imr.tohoku.ac.jp Tel: 022-215-2100

Course	Semester/Credits	Instructor	Affiliation				
General Inorganic and Analytical Chemistry B (無機分析化学概論B)	4 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials				
Course code/number :	Course code/number : SCH-INO222E						
Course Title : General In	organic and Analytical	Chemistry B (AMC)					
Purpose/Abstract : This class is a survey of	the general properties	and reactivity of main g	roup elements and transition metals. During				
the course, we cover chap	ters 9-22 in Shriver and	d Atkins' Inorganic Chemi	istry, 6th ed.				
Goal :							
The goal of this class is	to learn the general tre	ends in reactivity of the ch	nemical elements.				
Contents : Contents and Schedule: 1. Chemistry of main group elements 2. d-Block metals 3. Structure of d-block metal complexes 4. Basics of coordination chemistry							
	Books required/referenced : Inorganic Chemistry 6th Ed. (formerly Shriver and Atkins)						
Preparation and review : read the chapters							
Grading :							
Attendance and two exams							
Remarks :							
breedlove@m.tohoku.ac.	p						

Course	Semester/Credits	Instructor	Affiliation
General Inorganic and Analytical Chemistry C (無機分析化学概論C)	5 Semester 2 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials

Course code/number : SCH-INO223E

Course Title : General Inorganic and Analytical Chemistry C (AMC)

Purpose/Abstract :

The objective of this class is to introduce frontiers of inorganic chemistry. The aim of the class is to show how developments in inorganic chemistry impinges on the other disciplines, such as life science, condensed matter physics, and materials chemistry. We will discuss materials chemistry focusing on solid-state compounds, their structures, and electronic, magnetic, and optical properties. In addition, we will discuss nanomaterials and biosensors and introduce the area of catalysis.

Goal : Students will gain an understanding of the properties of solid-state materials and nanomaterials and learn about f-block elements. In addition, you will learn basic concepts of catalysis and biosensors.

Contents :

Basic Contents and Schedule: 1. f-block elements

2.

Introduction to catalysis

 $\begin{array}{c} 3 \\ 4 \end{array}$ Homogeneous catalysis Heterogeneous catalysis

5. Other catalytic systems (e.g., photocatalysis and electrocatalysis)

6.

Biological inorganic chemistry Biological inorganic processes Band structures of solids and semiconductors 7 8.

- 9. Magnetic properties of solids
- 10.
- Electronic properties of solids Optical properties of solids 11.
- 12. Solid-state and materials chemistry

Nanoscience
 Biosensors

Books required/referenced :

Inorganic Chemistry 6th Ed.

Preparation and review :

reading

Grading : Class attendance and two exams

Remarks :

breedlove@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation				
General Inorganic and Analytical Chemistry D (無機分析化学概論D)	6 Semester 2 Credits	火原 彰秀 (Akihide HIBARA)	Laboratory of Nano-Micro Chemical Analysis				
	Course code/number : SCH-INO224E Course Title : General Analytical Chemistry: two-phase equilibrium, electroanalytical chemistry, and instrumental analysis						
Purpose/Abstract : In this course, students will Special Class in Basic Chemistry		al methods based on the fundation	amental knowledge on analytical chemistry learnt in				
Goal : The purpose of this course is of selectivity and sensitivity.	to help students explain p	rinciples, appratuses, and appli	cations of the analytical methods from the viewpoint				
 Introduction Electrochemistry Potentiometry and cou Ion selective electrode Two-phase equilibrium Principle of chromatograp Ion chromatography at Review of electroanaly States of atoms Atomic absorption spe Inductively-coupled plating X-ray generation and call X-ray fluorescence Review of atomic and si 	lometry and other sensors and extracrtion raphy obly and size exclusion chromatog tical chemistry, extraction, a ctroscopy asma optical emission and m letection x-ray spectroscopies	raphy ind chromatography	nd schedule are as shon below:				
Books required/referenced : References are handed out at every class. Preparation and review :							
Students are expected to do homework (review). Grading: Quizzes in class, homework reports, and examination(s)							
E-mail: hibara@tohoku.ac.jp							

Course	Semester/Credits	Instructor	Affiliation
Exercises in Inorganic and Analytical Chemistry A (無機分析化学演習A)	4 Semester 1 Credits	宇田 聡 (Satoshi UDA)	Laboratory of Crystal Chemistry

Course code/number : SCH-INO251E

Course Title: Exercises in Inorganic and Analytical Chemistry A 無機分析化学演習A

Purpose/Abstract :

Obtain basic understanding of the thermochemistry and its practical approach in inorganic chemistry by solving various problem sets.

Goal :

To manipulate and solve the thermochemistry-related problems that students may encounter during their inorganic research works.

Contents :

Solve practical problems associated with basic thermochemistry after the short lecture is given at each class.

Books required/referenced :

A problem set will be given at every class hour.

Reprint from Dickerson, Gray, Darensbourg, Darensbourg (Chemical Principles)

Preparation and review :

Assignments are given as needed.

Grading :

Evaluation will be performed on the basis of attendance and results of the exercises.

Remarks :

Contact address: uda@imr.tohoku.ac.jp, 022-215-2100

Course	Semester/Credits	(Wataru K	ICTOF IHSAKA)	Affiliation	
Exercises in Inorganic and Analytical Chemistry B (無機分析化学演習B)	5 Semester 1 Credit	高坂 亘 関根 良博 福山 真央	(Yoshihiro SEKINE)	Laboratory of Solid-State Metal-Complex Chemistry	
Course code/number :	SCH-INO252E	(Mao FUKU	YAMA)		
	in Inorganic and Anal and Ligand-Field Theo		stry: From	Basic Inorganic Chemistry to Coordination	
Purpose/Abstract : Conduct exercises in in coordination chemistry rel		-	-	an area from basic inorganic chemistry to xplaining their fields.	
Goal : To gain a deeper under molecular chemistry.	To gain a deeper understanding of the course. And we hope that you may be interested in the field of the solid-state				
Contents : Conduct exercises and e	Contents : Conduct exercises and explanation for the fields.				
Books required/referenced : The problem set will be given at each class hour, but the following texts may be useful for your study: Shriver & Atkins' Inorganic Chemistry, by P. Atkins et al., Oxford University Press. D- and F-Block Chemistry, by C. Jones, RSC publisher.					
Preparation and review : The problems given at each class hour should be solved.					
Grading : Evaluation will be performed by your attendance records and results of the exercises.					
Remarks : w-kosaka@imr.tohoku.ac maofukuyama@tohoku.a	51 / 5	u.ac.jp 022-21	5-2033		

Course	Semester/Credits	Instructor	Affiliation
General Organic Chemistry A (有機化学概論A)	4 Semester 2 Credits	水上 進 (Shin MIZUKAMI)	Institute of Multidisciplinary Research for Advanced Materials
Course code/number : SCH-ORG221E Course Title : General Organic Chemistry A		aroma	ture of benzene and its derivatives, the principles of atic stability, heterocyclic aromatic compounds, the
Purpose/Abstract : Objective and Summary of Class: This class is part of organic chemistry classes, including		(5) Chem	el rule, and electrophilic substitution reactions ical properties and reactivity of alcohols, phenols, les, and thiols

Class in Basic Chemistry ${\rm I\!I}$, and General Organic Chemistry A, C, and D. The lecture covers the following topics:

- (1) Basic chemistry of organic halides.
- (2) Nucleophilic substitution reactions and reaction theory
- (3) Diene and allylic systems
- $\left(4\right)$ $\,$ Conjugated and aromatic compounds $\,$
- (5) Aromatic substitution reactions
- (6) Properties of alcohols, phenols, ethers, and thiols.
- This class will provide the broad fundamentals of organic

chemistry that are essential for students to be a chemist.

Goal :

Goal of Study:

- To understand
 - Properties of alkyl halides and related compounds, synthetic methods, radical reactions, principles of the stability of allyl radicals, the characteristics of Grignard reactions
 - (2) Reactions of organic compounds, especially the characteristics and reaction mechanisms of nucleophilic substitutions and aliphatic reactions
 - (3) Stability of conjugated chains, electrophilic reactions, kinetic and thermodynamic control of reactions, and the characteristics of Diels-Alder reactions

Contents :

The class will involve chapters 10, 11, and 14–18 of Organic Chemistry 9th Ed. by John McMurry. However, the parts in chapter 14 covering spectroscopy will be omitted.

- 1. Introduction
- 2. Organohalides (Chapter 10)
- 3. Nucleophilic substitutions and eliminations (Chapter 11)
- 4. Conjugated compounds (Chapter 14)
- 5. Benzene and aromaticity (Chapters 15)
- 6. Electrophilic aromatic substitution (Chapter 16)
- 7. Alcohols and phenols (Chapter 17)
- 8. Ethers and epoxides; Thiols and Sulfides (Chapter 18)

Books required/referenced :

McMurry Organic Chemistry 9th Ed.

- Preparation and review :
- Problem-solving exercise

Grading :

Evaluation will be performed on the basis of exams, class participation, and homework results.

Course	Semester/Credits	Instructor	Affiliation		
General Organic Chemistry C (有機化学概論C)	5 Semester 2 Credits	GRIDNEV ILYA	AMC Course		
Course code/number : :	SCH-ORG223E				
Course Title : Chemistry	of Carbonyl Compound	ls			
Purpose/Abstract : Learning the chemistr synthetic applications.	y of carbonyl compou	nds - main reactions, me	ethods of synthesis, reaction mechanisms,		
Goal :					
Understanding by the st	tudents the chemistry of	of carbonyl compounds			
Contents :					
Lectures based on the te	,	,			
Chapter 19 Aldehydd Chapter 20 Carboxyl		ophilic Addition Reactions			
Chapter 21 Carboxyl					
	l Alpha-Substitution Re	actions			
· ·	l Condensation Reaction				
Books required/referen	nced :				
McMurry "Organic Cher					
Preparation and review	Preparation and review :				
Reading the textbook, self-training in writing mechanisms					
Grading :					
Attendance of the class, activity in the discussions, tets results					
Remarks :	Remarks:				

Course	Semester/Credits	Instructor	Affiliation
General Organic Chemistry D (有機化学概論D)	5 Semester 2 Credits	永次 史 (Fumi NAGATSUGI)	Synthesis of Organic Functional Molecules

Course code/number : SCH-ORG224E

Course Title : General Organic Chemistry D

Purpose/Abstract :

Objective and Summary of Class:

This class is part of series of organic chemistry classes, including General Organic Chemistry A, C, and D.

- This lecture will concersn the following topics:
 - (1) Basic chemistry of amines and helelocycles
 - (2) Chemistry of biomolecules 2-1 Carbohydrotoc
 - 2-1 Carbohydrates
 2-2 Aminoacids, Peptides and Proteins
 - 2-2 Aminoacids 2-3 Lipids
 - 2-3 Lipids 2-4 Nucleic acids
- (3) The organic chemistry of metabolic pathway
- (4) Pericyclic reactions : electrocyclic reactions, cyclo additions and sigmatropic rearrangements

Goal:

- Goal of Study
 - (1) To understand the synthetic method of amines and reactions of amines
 - (2) $\,$ To understand the chemical properties and reactivity of heterocyclic amines
 - (3) To understand the structures and biological functions of biomoecules (carbohydrates, amino acids, peptides, proteins, lipids and nucleic acids
 - (4) To understand the organic chemistry of metabolic pathway in the cells of living organisms
 - (5) To understand the peicyclic reactions by molecular orbital theory

Contents :

The class will involve chapters 24-30 of Organic Chemistry by John McMurry.

Books required/referenced :

Textbook and References: "Organic Chemistry 8th ed." by John McMurry

Preparation and review :

They should do the homework, which is assigned in the class. In addition, they should do the exercise in the text book. Grading :

Record and Evaluation Method: Evaluation will be performed on the basis of exam and the homework results. Remarks :

Course	Semester/Credits	Instructor (Fumi NAGATSUGI)	Affiliation		
Exercises in Organic Chemistry A (有機化学演習A)	4 Semester 1 Credits		Institute of Multidisciplinary Research for Advanced Materials		
Course code/number :	SCH-ORG251E	(Takehiko WADA)			
Course Title : Exercises	in Organic Chemistry A	ł			
Understanding of o "Chemistry C" and "S	Purpose/Abstract : Objective and Summary of Class: Understanding of organic chemistry will be deepened by performing exercises based on the lecture contents of "Chemistry C" and "Special Class in Basic Chemistry II" and in parallel "General Organic Chemistry A" and "Laboratory Experiments in Chemistry A" (up to chapter 18 in McMurry, "Organic Chemistry", 8th ed.)				
described with arrows sho Contents : The problems at the e	wing the movement of nd of each chapter of	electrons. McMurry's "Organic Ch	rticular, organic reaction mechanisms can be nemistry", 8th ed. up to chapter 18 will be		
 performed. Details will be explained during the 1st lecture. Books required/referenced : McMurry "Organic Chemistry", 8th ed. and 9th ed. References will be introduced accordingly. Preparation and review : You should study the exercise in the McMurry's "Organic Chemistry", 8th ed. (chapters 1–18) 					
Grading : Evaluation will be based on attendance and the number of exercise answers given. Additional points will be given for answers written on the blackboard. Remarks :					
Course	Somostor/Crodits	Instructor	Affiliation		

Course	Semester/Credits		Affiliation
Exercises in Organic Chemistry B (有機化学演習B)	5 Semester 1 Credits	rumi NAGA15061) 永次 史 和田 健彦	Institute of Multidisciplinary Research for Advanced Materials
		(Takehiko WADA)	

Course code/number : SCH-ORG252E

Course Title : Exercises in Organic Chemistry B

Purpose/Abstract :

Understanding of organic chemistry will be deepened by performing exercises based on the lecture contents of "General Organic Chemistry C" and "General Organic Chemistry D" (from chapter 19 up to chapter 29 in McMurry, "Organic Chemistry", 8th ed.)

Goal :

It will be possible to explain basic organic chemistry in real terms. In particular, organic reaction mechanisms can be described with arrows showing the movement of electrons.

Contents :

The problems at the end of each chapter of McMurry's "Organic Chemistry", 8th ed. (chapters 19-29) will be performed. Details will be explained during the 1 st lecture.

Books required/referenced :

McMurry "Organic Chemistry", 8th ed. References will be introduced accordingly.

Preparation and review :

You should study the exercise in the McMurry's "Organic Chemistry", 8th ed. (chapters 19-29) .

Grading :

Evaluation will be based on attendance and the number of exercise answers given. Additional points will be given for answers written on the blackboard.

Course	Semester/Credits	Instructor	Affiliation
General Biochemistry	3 Semester	稲葉 謙次	IMRAM, Laboratory of Biomolecular Structure
(生物化学概論)	2 Credits	(Kenji INABA)	

Course code/number : SCH-BIC211E

Course Title: General Biochemistry (生物化学概論)

Purpose/Abstract:

To study the basic knowledge of molecular biology, biochemistry and structural biology and to understand biological phenomena at the molecular level, students will learn the following contents.

- 1) Structures and chemical properties of nucleic acids
- 2) Structures and chemical properties of amino acids and proteins
- 3) Biochemical methods for analyzing DNA sequence, amino acid sequence, protein structures and functions
- 4) Mechanisms of enzyme catalysis

Goal :

Students will gain deep insights into structures and physiological functions of nucleic acids, proteins and other important biomolecules. Also, students will understand mechanisms of operations of several important enzymes.

Contents :

Lectures will follow a textbook indicated below.

Especially, we will learn Chapters 1-9 of the textbook.

Books required/referenced :

Berg, Tymoczko and Stryer, Biochemistry, 7th international edition.

Preparation and review :

A short test will be given as a homework in the end of every class.

Grading :

Attendance, attitude in class and results of examinations will be taken into consideration for grading. Remarks :

Course	Semester/Credits	Instructor	Affiliation
Biochemistry I A	4 Semester	高橋 聡	Laboratory of Biological and
(生物化学 I A)	2 Credits	(Satoshi TAKAHASHI)	Molecular Dynamics

Course code/number : SCH-BIC221E

Course Title : The Molecular Design of Life and Biological Energy Transduction

Purpose/Abstract

To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemistry, molecular biology and biophysics. Students will learn:

 Structures and properties of sugars and lipids,
 Structures and properties of biological membranes Structures and properties of sugars and lipids.

Biological energy transduction.

It is desirable to consistently attend the discussions in Biochemistry II A concerning the DNA and RNA synthesis and metabolism of biomolecules

Goal

Students will gain an understanding of the functions of sugars, polysaccharides, lipids and membranes on the basis of their structures and thermodynamics. In addition, students will understand the process in which glucose is converted into ATP as energy currency.

Contents :

1st lecture	Chap	11	Carl	bohy	drates	Ι	

2nd lecture	Chap	11	Carbohydrates II
	01	10	Timida and sall second

Si u lecture	Chap	14	Lipius	anu	cen	membranes	1	
4th lecture	Chap	12	Lipids	and	cell	membranes	П	

5th lecture Chap 13 Membrane Channels and Pumps I

6th lecture Chap 13 Membrane Channels and Pumps II Chap 14 Signal Transduction Pathways

- 7th lecture Chap 15 Metabolism: Basic concepts and Design 8th lecture
- 9th lecture 10th lecture Chap 16 Glycolysis and Glugoneogengesis I Chap 16 Glycolysis and Glugoneogengesis II
- 11th lecture 12th lecture Chap 17 The Citric Acid Cycle Chap 18 Oxidative Phospholylation 1

13th lecture Chap 18 Oxidative Phospholylation II

14th lecture Epilogue: Lives of Warburg, Mayerhoff and Krebs

Books required/referenced 3

Berg, Tymoczko and Stryer, Biochemistry, 7th international edition (Freeman and Co. NY). The lectures will cover chapters 10 to 18 of the textbook. Preparation and review :

Students will be asked to submit homework every week.

Grading :

The results of examinations and attendance will be taken into consideration for evaluation

Remarks :

The contact addresses of Satoshi Takahashi are as follows: Office: IMRAM, east building 1, room 307 (Katahira Campus). Office hour: Tuesday from 4:00pm to 6:00pm. Email: st@tagen.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation		
Basic Experiments in Chemistry (基礎化学実験)	6 Semester 1 Credits	豊田 耕三 (Kozo TOYOTA)	Laboratory of Fundamental Chemistry		
and basic organic chemistr Goal : You can make fundame chemistry, and basic organ Contents : (1) Basic operations Calibration of volu (2) Titrations Neutralization titra Oxidation-reduction Complexometric to Neutralization titra (3) Analyses of absorpt (4) Measurement of e (5) Syntheses of organi	 A Experiments in Basic operations of basic inory. ental experiments of basic chemistry. umetric measuring instration tion tion tiration ation curves and acid of ion spectra using UV-venthalpy changes in neuron compounds on from cyclohexene 	rganic chemistry, basic an asic inorganic chemistry ruments dissociation constants of w			
 Books required/referenced : Textbooks (directions for the experiments) will be given in the class: other references are shown in the directions. Preparation and review : Read the textbook and draw a flow chart of the experiment, in advance. Grading : Evaluation will be performed by your attendance records and laboratory reports. 					
Remarks : Telephone: 022-795-660		-			

Course	Semester/Credits	Instructor	Affiliation
Laboratory Experiments in Chemistry A (化学一般実験A)	6 Semester 5 Credits	豊田 耕三 (Kozo TOYOTA)	Laboratory of Fundamental Chemistry

Course code/number : SCH-OCH252E

Course Title : Laboratory Experiments in Chemistry

Purpose/Abstract:

You learn fundamental experimental operations of inorganic chemistry, analytical chemistry, and the related fields. **Goal** :

You can make fundamental experiments of inorganic chemistry, analytical chemistry, and the related fields.

Contents :

(1) Inorganic experiments

- Synthesis of chemicals used for measurements
- Complex synthesis

X-ray crystal structure analysis

UV-visible absorption spectra of metal complexes

- Complex formation reaction rates Cyclic voltammetry of metal complexes
- A polytical experiments
- (2) Analytical experiments

Determination of the composition of an iron phenanthroline complex by using spectrophotometry Determination of fluoride ion contents by using an iron-selective electrode

(3) Optional experiments and exercises

Books required/referenced :

Textbooks (directions for the experiments) will be given in the class; other references are shown in the directions. **Preparation and review** :

Read the textbook and draw a flow chart of the experiment, in advance.

Grading :

Evaluation will be performed by your attendance records and laboratory reports.

Remarks :

Telephone: 022-795-6606 (staff room) : E-mail: toyota@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation			
Laboratory Experiments in Chemistry B (化学一般実験B)	7 Semester 6 Credits	豊田 耕三 (Kozo TOYOTA)	Laboratory of Fundamental Chemistry			
Goal : You can make fundament Contents : (1) Physical chemistry Optics and molec Molecular spectra Electronics Computer calcula (2) Organic experiment Basic procedures Grignard synthes Benzoin condensa	y Experiments in Chem experimental operations ntal experiments of phy experiments ular spectroscopy oscopy in solutions tion experiments ts for the organic chemiss is of triphenylmethanol ation and synthesis of h ng and various spectros	s of physical chemistry, or rsical chemistry, organic c try experiments exaphenylbenzene	ganic chemistry, and biochemistry. hemistry, and biochemistry.			
Enzyme Reaction kinetics Basic gene cloning Books required/referenced : Textbooks (directions for the experiments) will be given in the class; other references are shown in the directions.						
Preparation and review : Read the textbook and draw a flow chart of the experiment, in advance.						
Grading : Evaluation will be perfo						
Remarks : Telephone: 022-795-660	06 (staff room) : E-mail	: toyota@m.tohoku.ac.jp				

Course	Semester/Credits	Instructor	Affiliation
Analytical Chemistry A (分析化学A)	5 Semester 1 Credits	BREEDLOVE BRIAN	Laboratory of Nanomaterials

Course code/number : SCH-INO301E

Course Title : Analytical Chemistry A (AMC)

Purpose/Abstract :

This class is designed to give a survey of analytical techniques, including theory and instrumentation, used to analyze and characterize compounds and their properties. This is by no means an in-depth or comprehensive course in analytical chemistry.

Goal :

Students will gain an understanding of the analytical techniques and their instrumentation.

Contents :

- 1. Background, including basic definitions
- $2\,.\ {\rm Spectroscopic\ methods}$
- 3. Spectrometry
- 4. Chromatography (if time permits)

Books required/referenced :

Holler, Skoog and Crouch "Principles of Instrumental Analysis 6th Ed."

Skoog, West, Holler and Crouch "Fundamentals of Analytical Chemistry", 9th Ed.

Preparation and review :

Reading appropriate chapters in the textbook

Grading :

Attendance and final exam

Remarks :

email: breedlove@m.tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation
Inorganic Chemistry I A (無機化学 I A)	6 Semester 1 Credits	谷口 耕治 (Koji TANIGUCHI)	Solid-State Metal-Complex Chemistry
the atomic bonds, which for electronic structure. Goal : The goal of this class is to solid. One will understand t structure. Contents : 1. Introduction (crystal structure, X 2. Bonding character in (Relationship betwee 3. Quantum-mechanical (Molecular orbital, L 4. Band Theory (Expansion of molec Books required/reference The Electronic Structure Electronic Structure and Th Preparation and review :	roperties of Inorganic Ma inly dominated by an ele m a crystal structure, and o understand the relations he classification of atomic -ray diffraction) crystal en atomic bonding charac treatment of atomic bond CAO-approximation, Hüci ular orbital to crystal) ed : e and Chemistry of Solid e Properties of Solids (W 1 and therefore self-direct	ctronic structure of materia l electric properties such as ship between electronic struc bonds and the definition of ter and crystal structure) kel method) ls (P.A. Cox, OXFORD), Tr . A. Harrison, Dover), etc.	d. In this class, we will learn how to understand electrical conductivity of materials based on the cture and atomic bond/electrical conductivity of f metal and insulatorthat based on an electronic ransition Metal Oxides (P. A. Cox, OXFORD), idents are required to review for each class.

Course	Semester/Credits	Instructor	Affiliation
Inorganic Chemistry I B	6 Semester	岡田 純平	Laboratory of Crystal Chemistry
(無機化学 I B)	1 Credits	(Junpei OKADA)	

Course code/number : SCH-INO304E

Course Title : Inorganic Chemistry I B

Purpose/Abstract :

When we synthesize materials, we should refer to phase diagrams. Phase diagrams are one of the most important sources of information concerning the behavior of elements, compounds and solutions. They give us information of phase composition and phase stability as a function of temperature, pressure and composition. The course is intended to understand the principles of phase diagrams.

Goal:

The goal of this class is to understand and familiarize with binary phase diagrams.

Contents :

- 1. Introduction
 - (Basics for thermodynamics)
- 2. Phase equilibria and phase diagrams
- (One component phase diagram, Phase rule and equilibrium)
- 3. Phase diagrams of two-component systems
- (Solid solutions, Construction of equilibrium phase diagrams of two-component systems, Cooling curves) 4. Interpretation of phase diagrams
- (Phase composition, The Lever rule)

Books required/referenced :

- 1. Introduction to Metallurgical Thermodynamics, D.R. Gaskell, McGraw-Hill, 1980
- 2 . Thermodynamics of Solids, R.A. Swalin, John Wiley, 1968

Preparation and review :

Printed materials for review will be distributed.

Grading :

Class attendance and examination

Course	Semester/Credits	Instructor	Affiliation			
Inorganic Chemistry II A (無機化学 II A)	6 Semester 1 Credits	宮坂 等 (Hitoshi MIYASAKA)	Division of Solid-state metal-complex chemistry			
Course code/number : SCH-INO305E Course Title : Inorganic Chemistry II A Purpose/Abstract : Topics will include the structure and mechanical and physical properties of supramolecular complexes and multi-						
dimensional framework systems Goal :						
The goal of this course systems and related chem		ding of supramolecular c	hemistry and multi-dimensional framework			
Contents : After discussion about topic involving supramoled			related chemistry, students will present a scussion by the class.			
Books required/referer Steed and Atwood, Supr		2nd Ed. Wiley, and others	3			
Preparation and review Prepare a lecture and dimensional networks and	discussion on a topic		try and related chemistry such as multi-			
Grading : Attendance and in-class	discussions will be use	d to evaluate the students	progress.			
Remarks : miyasaka@imr.tohoku.ad	c.jp					
0.000	Compostor (Oraclita	la atra cata a	A.66111-0-1-			
Course Semester/Credits Instructor Affiliation						
Physical Chemistry II A (物理化学 II A)		大庭 裕範 (Yasunori OBA)	Institute of Multidisciplinary Research for Advanced Materials			
(物理化学 II A) Course code/number : SC Course Title : Physical Che	1 Credits CH-PCH303E		Institute of Multidisciplinary Research for			
(物理化学 II A) Course code/number : SC Course Title : Physical Che Purpose/Abstract : To understand basic print science (structures, electron	1 Credits CH-PCH303E mistry II A ciples of electron parama	(Yasunori OBA) gnetic resonance (EPR) and	Institute of Multidisciplinary Research for			
(物理化学 II A) Course code/number : SC Course Title : Physical Che Purpose/Abstract : To understand basic print science (structures, electron Goal : Subjects to be learned 1. Properties of a spin 2. How magnetism iso 3. Basic principles of r 4. Magnetic interaction 5. Microwave techniqu	1 Credits CH-PCH303E mistry II A ciples of electron parama ic states, dynamics and et angular momentum. explained by electron spir nagnetic resonance pheno ns and its relation to mole ses used in EPR. echniques in EPR: pulse	(Yasunori OBA) gnetic resonance (EPR) and c.) .	Institute of Multidisciplinary Research for Advanced Materials			
(物理化学 II A) Course code/number : SC Course Title : Physical Che Purpose/Abstract : To understand basic print science (structures, electron Goal : Subjects to be learned 1. Properties of a spin 2. How magnetism is of 3. Basic principles of r 4. Magnetic interaction 5. Microwave technique 6. Some of advanced t resolved measurem Contents : 1. Properties of a spin at 2. Several types of magr 3. Basic principles of mag 4. Magnetic interactions 5. Microwave techniques	1 Credits CH-PCH303E mistry II A ciples of electron parama ic states, dynamics and et angular momentum. explained by electron spir nagnetic resonance phenon ns and its relation to mole ues used in EPR. echniques in EPR: pulse ents ngular momentum. hetism and role of electror gnetic resonance phenom of electron spin: Interacti s used in EPR. chniques in EPR: pulse m ts	(Yasunori OBA) gnetic resonance (EPR) and c.) . menon ecular structures, electronic : method, double resonances, n spin. enon ons with static field, nuclear	Institute of Multidisciplinary Research for Advanced Materials			

Grading : Attendance

Course	Semester/Credits	Instructor	Affiliation
Polymer Chemistry I	6 Semester	及川 英俊	IMRAM, Tohoku Univetsity
(高分子化学 I)	1 Credits	(Hidetoshi OIKAWA)	

Course code/number : SCH-OCH301E

Course Title : Polymer Chemistry I

Purpose/Abstract :

The category of polymer (or macromolecular) materials is so wide, for example, familiar fiber (or textile), rubber, plastics, and photo-resist to fabricate semiconductor integrated circuit (IC). Protein and nucleic acid are also a kind of polymer, so-called biopolymer.

In this lecture, synthesis, structure, and properties of polymers will be first introduced, which is considerably different from the case of ordinary organic low-molecular weight compounds. Next, high-performance and functional polymers, and hybrid polymer meterials will be explained in detail. In addition, biopolymer will be summarized from the viewpoint of biophysics.

Goal :

Aiming at making the backbone in the specific fields of advanced materials science in nano-science and nano-technology through basic understanding for polymer material chemistry.

Contents :

(1) Basic Principles

- (2) Molecular Weight and Polymer Solutions.
- (3) Chemical Structure and Polymer Morphorogy
- (4) Chemical Structure and Polymer Properties
- (5) Evaluation, Characterization and analysis of Polymers.

Books required/referenced :

"Polymer Chemistry -An Introduction-" (3rd Ed.) by Malcolm P. Stevens, Oxford Univ., Press, NY, 1999.

Preparation and review :

Students are strongly expected to review enough the lectures.

Grading :

Attendance and regular examination

Remarks :

Course	Semester/Credits	Instructor	Affiliation
Organic Chemistry I A (有機化学 I A)	6 Semester 1 Credit	GRIDNEV ILYA	AMC Course

Course code/number : SCH-ORG301E

Course Title : Spectral identification of organic compounds

Purpose/Abstract:

Learning to elucidate structures of organic compounds from the data of MS, IR and NMR spectroscopy

Modern spectral techniques make possible elucidation of structures of organic compounds from spectral data. These skills will be trained via lectures on the priciples of the spectral methods and practical exercises for solving the structures.

Goal:

Train students to identify organic compounds from spectra

Contents :

Lectures, discussions in the class, joint solution of problems, tests.

- MS spectroscopy
- GC spectroscopy

1H and 13 NMR spectroscopy

Multinuclear NMR spectroscopy

2D NMR spectroscopy

Books required/referenced :

Silverstein. Spectroscopic identification of organic compounds

Preparation and review :

Reading textbook, solving problems

Grading :

Attendance of the class, activity in the discussions, tests results $\ensuremath{\mathsf{Remarks}}$:

Course	Semester/Credits		Affiliation	
Organic Chemistry I B (有機化学 I B)	6 Semester 1 Credits	(Fumi NAGATSUGI) 永次 史 和田 健彦 (Takehiko WADA)	Institute of Multidisciplinary Research for Advanced Materials	
Course code/number :	SCH-ORG302E	()		
Course Title : Organic Cl	hemistry I B			
This class is the for provides a thorough i	· · ·			
Goal : Goal of Study: To gain an understanding of the cutting-edge research fields of organic chemistry, bioorganic chemistry, and organic materials.				
Contents :	Contents :			
Contents and Progress Schedule of the Class: Topics of Chemical Biology and Bio-Nano&Medical-Biopolymers Advanced Synthetic Organic Chemistry The Chemical Reactions in the Biological Systems Advanced Polymer Materials Biomimetic and Supramolecular Chemistry Some of these contents are included in Organic Chemistry II B				
Books required/referen				
	Textbook and References: They will be announced in the class.			
Preparation and review : Students should review what they learned in the class.				
Grading : Record and Evaluation Method: Attendance and Reports.				
Remarks : This course will not be held in this semester (2018).				

Course	Semester/Credits	Instructor	Affiliation
Organic Chemistry Ⅱ A (有機化学 Ⅱ A)	6 Semester 1 Credit	GRIDNEV ILYA	AMC Course

Course code/number : SCH-ORG303E

Course Title : Spectral identification of organic compounds

Purpose/Abstract :

Learning to elucidate structures of organic compounds from the data of MS, IR and NMR spectroscopy

Modern spectral techniques make possible elucidation of structures of organic compounds from spectral data. These skills will be trained via lectures on the priciples of the spectral methods and practical exercises for solving the structures.

Goal:

Train students to identify organic compounds from spectra

Contents :

Lectures, discussions in the class, joint solution of problems, tests.

- MS spectroscopy
- GC spectroscopy

1H and 13 NMR spectroscopy

Multinuclear NMR spectroscopy

2D NMR spectroscopy

Books required/referenced :

Silverstein. Spectroscopic identification of organic compounds

Preparation and review :

Reading textbook, solving problems

Grading :

Attendance of the class, activity in the discussions, tests results $\ensuremath{\mathsf{Remarks}}$:

Course	Semester/Credits	Instructor	Affiliation
Organic Chemistry II B (有機化学 II B)	6 Semester 1 Credits	(Fumi NAGATSUGI) 永次 史 和田 健彦 (Takehiko WADA)	Institute of Multidisciplinary Research for Advanced Materials
(Takchiko WADA) Course code/number : SCH-ORG304E Course Title : Organic Chemistry IIB Purpose/Abstract : Objective and Summary of Class: This class is the formar part of series of organic chemistry classes, Organic Chemistry IIB and IIB. This class provides a thorough introduction to the current topis of organic chemistry. Fundamental knowledge and cutting- edge research in organic chemistry and related area will be presented by each professor. Goal : Goal of Study: To gain an understanding of the cutting-edge research fields of organic chemistry, bioorganic chemistry, and organic materials.			
Contents : Contents and Progress Schedule of the Class: Topics of Chemical Biology and Bio-Nano&Medical-Biopolymers Advanced Synthetic Organic Chemistry The Chemical Reactions in the Biological Systems Advanced Polymer Materials Biomimetic and Supramolecular Chemistry Some of these contents are included in Organic Chemistry I B			
Books required/referenced : They will be announced in the class. Preparation and review : Students should review what they learned in the class. Grading :			
Attendance and Reports. Remarks : This course will not be held in this semester (2018).			

Course	Semester/Credits	Instructor	Affiliation
Biochemistry II A (生物化学 II A)	6 Semester 1 Credits	松井 敏高 (Toshitaka MATSUI)	Laboratory of Cell Functional Molecular Chemistry, Institute of Multidisciplinary Research for Advanced Materials

Course code/number : SCH-BIC301E

Course Title : Biochemistry of nucleic acid and protein synthesis.

Purpose/Abstract :

To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemsity, molecular biology and biophysics.

It is desirable to consistently attend the discussions in Biochemistry IIB concerning the photosynthesis, protein turnover and protein trafficking.

Goal:

Students will gain an understanding of the various biological phenomenom related to synthesis of nucleic acids and proteins. Contents :

The lectures will cover chapters 28 to 32 of the textbook.

1st class chap 28 DNA replication, repair and recombination I

- 2nd class chap 28 DNA replication, repair and recombination II
- 3rd class chap 29 RNA synthesis and processing I
- 4th class chap 29 RNA synthesis and processing II
- 5th class chap 30 Protein synthesis
- 6th class chap 31 The control of gene expression in prokaryotes
- 7th class chap 32 The control of gene expression in eukaryotes

including practical approach for heterologous protein expression

Books required/referenced :

Berg, Tymoczko and Stryer, Biochemistry, 7th international edition (Freeman and Co. NY).

Preparation and review :

Some assignments would be given for better understandings.

Grading :

The results of examinations and attendance will be taken into consideration for evaluation.

Remarks :

The contact addresses of Toshitaka Matsui are as follows:

Office: South Multidisciplinary Research Laboratory Building 1, room 607 (Katahira Campus).

Office hour: Tuesday from 1:00pm to 3:00pm.

Email: toshitaka.matsui.d5@tohoku.ac.jp

Course	Semester/Credits	Instructor	Affiliation
Biochemistry II B (生物化学 II B)	6 Semester 1 Credits	門倉 広 (Hiroshi KADOKURA)	Laboratory of Biomolecular Structure, IMRAM
 Course code/number : SCH-BIC302E Course Title : Biochemistry IIB Purpose/Abstract : To learn the biological phenomena at the molecular level and to gain a deeper understanding of biochemistry, molecular biology and biophysics. Goal : Students will gain an understanding of the principles and basic mechanisms of photosynthesis, protein turnover and protein trafficking. Contents : Handouts will be provided. The lectures will be interactive. 1. Light reactions of photosynthesis I 2. Light reactions of photosynthesis I 3. Calvin cycle and the pentose phosphate pathway 4. Protein turnover and amino acid metabolism 5. Intracellular compartments and transport I 6. Intracellular compartments and transport II 7. Final exam Books required/referenced : 1. Berg, Tymoczko and Stryer, Biochemistry, international edition, 7th (Freeman and Co. NY) (chapters 19, 20, and 23). 2. Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, and Walter, Essential Cell Biology, 4th edition (Garland 			
Preparation and review : Some assignments may be given for better understanding. Grading :			
The final grade in this course will be based on the final exam, quizzes, attendance, and active participation. Remarks : The contact address of Hiroshi KADOKURA Office: Laboratory of Biomolecular Structure, IMRAM South Multidisciplinary Research Laboratory Building 1, Room 508, Katahira Campus Email: hiroshi.kadokura.b3@tohoku.ac.jp			

Course	Semester/Credits	Instructor	Affiliation
Polymer Chemistry II	6 Semester	及川 英俊	IMRAM, Tohoku Univetsity
(高分子化学 II)	1 Credits	(Hidetoshi OIKAWA)	

Course code/number : SCH-OCH302E

Course Title : Polymer Chemsitry II

Purpose/Abstract :

The category of polymer (or macromolecular) materials is so wide, for example, familiar fiber (or textile), rubber, plastics, and photo-resist to fabricate semiconductor integrated circuit (IC). Protein and nucleic acid are also a kind of polymer, so-called biopolymer.

In this lecture, synthesis, structure, and properties of polymers will be first introduced, which is considerably different from the case of ordinary organic low-molecular weight compounds. Next, high-performance and functional polymers, and hybrid polymer meterials will be explained in detail. In addition, biopolymer will be summarized from the viewpoint of biophysics.

Goal:

Aiming at making the backbone in the specific fields of advanced materials science in nano-science and nano-technology through basic understanding for polymer material chemistry.

Contents :

- (1) Free Radical Polymerization
- (2) Ionic Polymerization
- (3) Vinyl Polymerization with Complex Coordination Catalysts
- (4) Step-reaction and Ring-opening Polymerization

Books required/referenced :

"Polymer Chemistry -An Introduction-" (3rd Ed.) by Malcolm P. Stevens, Oxford Univ., Press, NY, 1999.

Preparation and review :

Students are strongly expected to review enough the lectures.

Grading :

Attendance and regular examination

Course	Semester/Credits	Instructor	Affiliation
Science, Technology and Industry in Japan (日本の産業と科学技術)	4 Semester 1 Credit	渡邉 由美子 (Yumiko WATANABE)	Global Learning Center, Institute for Excellence in Higher Education
 Course code/number : SCH-OAR801E Course Title : The past, present, and future of industry, science, technology and their relationships and integration in Japan Purpose/Abstract : This class is a newly developed multidisciplinary course that was organized by the faculties of science, engineering, and agriculture. Except for the first class, each class will feature a talk by a specialist in his/her field. The topic of each talk will be the "past, present, and future of industry, science, and technology, and their relationships and integration in Japan." Students will obtain fundamental problem-solving abilities, proactiveness, understanding of different cultures, and a multidisciplinary perspective. Registered students are expected to apply what they learn from this course in the newly developed class titled "Multidisciplinary Internship." Goal : The goal of this course is to give students a multidisciplinary perspective and open-minded attitude. Contents : Schedule of the course # 1 Guidance # 2 - 8 Lectures by guest speakers who are specialists in the fields of science, technology, and industry. (# 9) Group presentations and/or individual essay on "The project to integrate the fields of science, technology, and agriculture" by students 			
Preparation and review : 10 hours Grading : Attendance and active participation (50%), a group presentation or an essay on "Our/My project: how we/I will integrate the fields of science, technology, and agriculture" (50%) Remarks :			
Th guest espeakers and topics will be announced in timely manner. This course is opened to Japanese students, too.			

List of Frequently Used Academic Terms

学科	Department
数学	Mathematics
物理学	Physics
宇宙地球物理学	Astronomy and Geophysics
化学	Chemistry
地圈環境科学	GeoEnvironmental Science (a division of Earth Science)
地球惑星物質科学	Earth and Planetary Materials Science (a division of Earth Science)
生物学	Biology

Professor
Associate Professor
Lecturer
Assistant Professor

学期		Semester
1セメスター 3セメスター 5セメスター 7セメスター		Spring Semesters
2セメスター)	

4セメスター	Fall Semesters
6セメスター	Fail Semesters
8セメスター	J

単位	Credit
授業	Course, Class
時間割	Schedule, Timetable