JYPE 2016-2017 Spring Semester Course Description

Tohoku University

Institute for Excellence in Higher Education

Contents

Page Course Title

- 1 Japanese 1, 2, 3, 4
- 10 Japanese Culture B
- $\underline{12}$ Japanese Culture D
- 14 Science, Technology and Industry of Japan
- 16 Mathematics B
- $\underline{19}$ Inorganic Chemistry
- $\underline{21}$ Geophysics
- $\underline{22}$ Molecular and Cellular Biology
- 23 Evolution of the Western Pacific Island Arcs and Their Environments
- $\underline{25}$ Introduction to Resource and Environmental Economics
- $\underline{26}$ Applied Biological Chemistry
- $\underline{27}$ Materials Science and Engineering B
- $\underline{28}$ Computer Software Engineering
- 30 Fundamentals of Computer Engineering
- $\underline{32}$ Electricity and Magnetism B
- $\underline{34}$ Chemical and Biomolecular Engineering I
- 36 Chemical and Biomolecular Engineering II
- 38 Geological Environment and Earthquake Disaster

Japanese 1

Instructors: Prof. Satoshi UEHARA, Senior Assistant Prof. Masako HAYASHI and staff Contact e-mail address: Uehara: uehara@he.tohoku.ac.jp, Hayashi:masako@tohoku.ac.jp

Japanese 1 is for novice learners. When you successfully complete the course, you can expect to pass Level 5 (N5) of the Japanese Language Proficiency Test (http://www.jlpt.jp/). The course begins with the study of hiragana, katakana and pronunciation and then covers all 25 Lessons of "Minna no Nihongo I" published by 3A Network. The course grade will be based on attendance, participation and in-class quizzes (50%) and the final examination (50%).

The classes (B110a/B110b) will be held on every Monday and Wednesday (except a few national holidays and each class will generally cover 1 lesson. The schedule below is subject to change.

[April 10 (Mon) Orientation]

01. APR 12 (Wed) HIRAGANA
02. APR 17 (Mon) L.1-1 ...wa...desu.

03. APR 19 (Wed) L.1-2 / L.2

...wa...ja arimasen. S+ka?

Kore/sore/are Soodesu Sooja arimasen

After April 18, the classes will be held on every Monday and Wednesday (except a few national holidays) and each class will generally cover 1 lesson. The schedule below is subject to change.

04. APR 24 (Mon) L.3 ∼ JUL 12 (Wed) L.25 L.3

Koko/soko/asoko Doko/dochira N no N

L.4 Ima ...ji ...fun desu V-masu masu/mashita/masen/masendeshita ...kara...made N to N S+ne

L.5

N(place) e ikimasu Doko e mo ikimasen N(vehicle) de ikimasu Itsu S+yo

L.6

... o V ... o shimasu Nani o shimasu ka N(place) de V V masen ka V mashoo

L.7

N(tool/means) de V N(person) ni agemasu N(person) ni moraimasu Moo V mashita.

L.8

N wa na-adj desu N wa i-adj desu Totemo Amari N wa doodesu ka N1 wa donna N2 desu ka S1 ga S2 Dore

L.9

N ga arimasu N ga wakarimasu N ga sukidesu Donna N Yoku Daitai Takusan Sukoshi Amari Zenzen S1 kara S2 Dooshite

L.10

N ga arimasu/imasu N1(place) ni N2 ga arimasu/imasu N1 wa N2(place) ni arimasu/imasu N1(thing/person/place) no N2(position) N1 ya N2

L.11

Numbers Quantifier(period)ni ...kai Quantifier dake/N dake

L.12

Past tense of noun sentences and *na*-adjective sentences Past tense of *i*-adjective sentences N1 wa N2 yori adj desu N1 to N2 to dochira no hoo ga adjective desu ka N1 no naka de dore ga ichiban adjective desu ka

L.13

N ga hoshii desu V masu V tai desu N(place) e V masu-form ni ikimasu Dokoka/nanika L.14 verb conjugation Verb groups Verb te-form Verb te-form kudasai V te-form imasu V masu-form mashoo ka S1 ga, S2

L.15

V te-form mo ii desu V te-form wa ikemasen V te-form imasu V te-form imasu

L.16

V *te*-form, [V *te*-form], ... V1 *te*-form *kara*, V2 N1 *wa* N2 *ga* adjective *Dooyatte Dono* N

L.17

V nai-form V nai-form kudasai V nai-form nakereba narimasen V nai-form nakutemo ii desu N made ni

L.18

Verb dictionary form N/V dictionary form *koto ga dekimasu* Watashi no shumi wa N/V dictionary form *koto desu* V1 dictionary form *mae ni* V2 Nakanaka Zehi

L.19

Verb ta-form V ta-form koto ga arimasu ka V ta-ri, V ta-ri shimasu i-adj ku narimasu na-adj/N ni narimasu Soodesu ne

L.20

Polite style and plain style Conversation in the plain style

L.21

plain form *to omoimasu* S/plain form *to iimasu* plain form *deshoo* N1(place) *de* N2 *ga arimasu* N(occasion) *de*

L.22

Noun modification Noun modification by sentences

L.23

...*toki*, ... V dictionary form/V *ta*-form *toki* V dictionary form *to*, ... N *ga* adjective/V

L.24

Kuremasu V *te*-form *agemasu/moraimasu/kuremasu* V *te*-form *moraimasu* V *te*-form *kuremasu* N(person) *ga* V Interrogative *ga* V

L.25 V ta-form ra,kute mo ...demo Moshi Ikura ...temo/demo

05. JUL 19 (Wed) EXAMINATION

Japanese 2

Instructors: Prof. Satoshi UEHARA, Senior Assistant Prof. Masako HAYASHI and staff Contact e-mail address: Uehara: uehara@he.tohoku.ac.jp, Hayashi:masako@tohoku.ac.jp

Japanese 2 is for those who have finished Japanese 1 or those who have equal proficiency (i.e., Level II according to the placement test for JAPANESE LANGUAGE PROGRAM AT KAWAUCHI). When you successfully complete this course, you can expect to pass Level 4 (N4) of the Japanese Language Proficiency Test (http://www.jlpt.jp/). The course covers all 25 Lessons of "Minna no Nihongo II" published by 3A Network. The course grade will be based on attendance, participation and in-class quizzes (50%) and the examinations (50%).

The classes (B210a/B210b /B210c) will be held on every Monday and Wednesday (except a few national holidays) and each class will generally cover 1 lesson. The schedule below is subject to change.

The classes will be held on every Monday and Thursday (except a few national holidays) and each class will generally cover 1 lesson. The schedule below is subject to change.

[April 10 (Mon) Orientation]

01. APR 12 (Wed) L.26 \sim MAY 24 (Mon) L.36

L.26

...n desu V te-form itadakemasen ka Interrogative V ta-form ra ii desu ka ..wa suki/kirai/joozu/heta desu

L.27

Potential verbs Miemasu Kikoemasu Dekimasu wa/mo/shika

L.28

V1 masu-form nagara V2 V te-form imasu plain form shi, ... Soreni Sorede

L.29

V te-form imasu N ga V te-form imasu N wa V te-form imasu V te-form shimaimashita Dokokani Dokokade

L.30

V *te*-form *arimasu* N1 *ni* N2 *ga* V *te*-form *arimasu* N2 *wa* N1 *ni* V *te*-form *arimasu* V *te*-form *okimasu* V *te*-form *okimasu* Mada V(affirmative)

L.31

Volitional form V volitional form to omotte imasu V dictionary form tsumori desu V nai-form tsumori desu V dictionary form/N yotee desu Mada V te-form imasen

L.32

V ta-form hoo ga ii desu V nai-form hoo ga ii desu ...deshoo ...kamoshiremasen Kitto Tabun Moshikashitara

L.33

Imperative and prohibitive forms ...to yomimasu ...to kaite arimasu X wa Y to yuu imi desu S/plain form to itte imashita S/plain form to tsutaeteitadakemasen ka

L.34

V1 toori ni V2 N no toori ni V V1 ta-form ato de, V2 N no atode V V1 te-form V2 V1 nai-form naide V2

L.35

Conditional form ...to ...tara N nara ...hodo ...

L.36

...yoo ni V ...yoo ni narimasu. ...yoo ni shimasu

02. MAY 24 (Wed) MIDTERM EXAMINATION

03. MAY 29 (Mon) L.37 \sim JUL 12 (Wed) L.50

L.37

Passive verbs N1(person1) *wa* N2(person2) *ni* V passive N1(person1) *wa* N2(person2) *ni* V passive N(thing) *ga/wa* V passive N1 *wa* N2(person) *ni yotte* V passive

L.38 V plain form *no wa/ga/o* *tokimo/tokiya/tokino/tokini*

L.39 V *te*-form, ... V *nai*-form *nakute*, ... *i*-adj *kute*, ... *na*-adj *de*, ... *...node*, ...

L.40

Interrogative V/i-adj/na-adj/N plain form ka, ka doo ka, ... V te-form mimasu

L.41

N1 ni N2 o yarimasu N1 ni N2 o itadakimasu N o kudasaimasu V te-form yarimasu V te-form itadakimasu V te-form kudasaimasen ka N ni V L.42

... tame ni, ... V dictinary form no ni ...

L.43

V masu-form/i-adj/na-adj soo desu V te-form kimasu

L.44

V masu-form/i-adj/na-adj sugimasu V masu-form yasui desu V masu-form nikui desu i-adj ku shimasu na-adj ni simasu N ni shimasu

L.45 ...baai wa,noni, ...

L.46

V dictionary form *tokoro desu* V *ta*-form *tokoro desu* V *ta*-form *tokoro desu* V *ta*-form *bakari desu* ...*hazu desu*

L.47 plain form soo desu ...yoo desu

L.48

Causative verbs V causative te-form itadakemasenka

L.49

Keigo 1 honorific verbs o V masu-form ni narimasu o V masu-form kudasai

L.50

Keigo 2 o V masu-form shimasu go V shimasu polite expressions gozaimasu ...de gozaimasu yoroshii deshoo ka

04. JUL 19 (Wed) EXAMINATION

Japanese 3

Instructors: Prof. Satoshi UEHARA, Senior Assistant Prof. Masako HAYASHI and staff Contact e-mail address: Uehara: uehara@he.tohoku.ac.jp, Hayashi:masako@tohoku.ac.jp

Japanese 3 is for those who have completed Japanese 2 in the preceding semester or those who have equal proficiency (i.e., Level III according to the placement test for JAPANESE LANGUAGE PROGRAM AT KAWAUCHI). When you successfully complete this course, you can expect to pass Level 3 (N3) of the Japanese Language Proficiency Test (http://www.jlpt.jp/). Japanese 3 consists of the following four classes, and you must take all four classes to receive a grade for the course:

[April 10 (Mon) Orientation]

G310 (Grammar):

Learn and practice intermediate level grammatical patterns. The course materials are provided by the instructor.

S310a/S310b (Speaking):

Learn how to convey one's ideas and opinions orally in Japanese by having discussions and presentations on current familiar topics in class. The course materials are provided by the instructor.

R310 (Reading):

Practice reading easy but authentic reading materials to familiarize yourself with written Japanese and boost your reading comprehension ability. The textbook is "Daigaku/Daigakuin Ryuugakusei no Nihongo 1- Reading Comprehension-" (revised version) published by ALC.

P310a/P310b (Practice):

Practice and utilize what you have learned in grammar, reading and speaking classes in actual communicative contexts.

Each class has its own class and exam schedule and grading policy, which are to be announced on the first day of the class. Japanese 3 grade will be based on the average score of the four classes.

Japanese 4

Instructors: Prof. Satoshi UEHARA, Senior Assistant Prof. Masako HAYASHI and staff Contact e-mail address: Uehara: uehara@he.tohoku.ac.jp, Hayashi:masako@tohoku.ac.jp

Japanese 4 is for those who have completed Japanese 3 in the preceding semester or those who have equal proficiency (i.e., Level IV according to the placement test for JAPANESE LANGUAGE PROGRAM AT KAWAUCHI). When you successfully complete this course, you can expect to pass N2 of the Japanese Language Proficiency Test (http://www.jlpt.jp/). Japanese 4 consists of the following six classes, and you must take FOUR of them to receive a grade for the whole course:

[April 10 (Mon) Orientation]

G410 (Grammar):

Learn and practice upper-intermediate level grammatical patterns. The textbook will be announced by the instructor in the first class.

S410 (Speaking):

Learn how to convey one's ideas and opinions orally in Japanese by having discussions and presentations on current familiar topics in class. You are required to write a resume and short reports. The course materials are provided by the instructor.

R410 (Reading):

Practice reading easy but authentic reading materials to familiarize yourself with written Japanese and boost your reading comprehension ability. The textbook is "Daigaku/Daigakuin Ryuugakusei no Nihongo 3: Ronbun Dokkai hen" published by ALC.

P410 (Practice):

Practice and utilize what you have learned in grammar, reading and speaking classes in actual communicative contexts.

CC430 (Cross-cultural Communication (Intermediate Co-learning Seminar)):

This class provides you with opportunities to gain wider and deeper perspectives of Japanese culture and society and also reflect on your own cultural values through active interactions with Japanese students. The class will help you improve your communication and presentation skills in Japanese.

MM400 (Multimedia based Japanese Learning -Talk about your language and culture through manga and animation (Intermediate Co-learning Seminar)):

Through group work with Japanese students and foreign students, you will prepare multimedia teaching materials, using as comics, animation, dramas etc., that you will actually use to teach. Through collaborative learning between Japanese students and foreign students, and by explaining the language and culture of your country, you will deepen your understanding of your own culture and cross-cultural understanding.

Each class has its own class and exam schedule and grading policy, which are to be announced on the first day of the class. Japanese 4 grade will be based on the average score of the four classes you choose.

Course Title	Japanese Culture B
Semester	Spring 2017
Credit	2
Instructor	Part-time lecturer Koji SHIDARA
E-mail	kojishidara@gmail.com
Class Hours / Period	14 :40-16 :10 Wednesday April 12 – July 5, 2017
Room	2nd Floor, Room "Ka-Shou 2" (711), Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Aobayama campus

An exploratory culture course, Japanese Culture B is offered for foreign students to learn about and share insights into various aspects of the living culture of Japan with some emphasis placed on the effects of the Great East Japan Earthquake of 2011 and the rebuilding effort thereafter. Students will learn not only through discussion and lecture but through actually participating in some of the large-scale rebuilding efforts taking place in the area.

Course Summary

The course comprises three basic approaches: discussion of certain cultural aspects of the country; reading literature by well-known authors; and field trips to places of significance from the cultural perspective. These components are designed so that they complement each other. Japanese Culture B and D courses overlap in part due to the nature of rebuilding efforts taking place in the Tohoku Region.

Learning Goals

Six years after the 2011 earthquake and tsunami, the rebuilding effort continues in the Tohoku Region. Students will gain a new perspective of the culture of this nation by witnessing and taking part in some of the dynamic interactions of the old and new elements in the reconstructing process.

Course Schedule		
April 12	1. Course introduction: Fall semester review; overview of Tohoku Region	
April 19	2. Rebuilding effort in Tohoku after 2011	
April 22	3. Fieldwork in the coastal district of Arahama, Sendai: Visiting former Arahama Elementary School; partaking in the forestation of the tsunami embankment (Saturday)	
April 26	4. Reading: "The Bears of Nametoko," a short story by Miyazawa Kenji	
May 10	5. Manga & popular music—casual ways of expresseing the Japanese mind	
May 17	6. Preparing for Shiroishi field trip; reading movie script "We are no traitors!"	
May20	7. Fieldwork in Shiroishi: Visiting castle and noh theater; meeting sword-making master (Saturday)	
May 27	8 . Fieldwork in Iwanuma City : Partaking in the forestation of the tsunami embankment at the Millennium Hope Hills (Saturday)	
May 31	9. Tamamushi Sadayu : Story of one last samurai	
June 7	10. Living in Meiji period Japan: Reading "Separate Ways" by Higuchi Ichiyo	
June 14	11. Preparing for fieldwork in Tomiya and Iwadeyama	
June 17	12. Fieldwork in Tomiya and Iwadeyama: Visiting the Uchigasaki Sake Brewery and former samurai school (Saturday)	
June 21	13.Reading a children's story: Examining early exposure to history	
June 28	14. Student presentation	
July 5	15. Student presentation	
Course Grading		
Evaluation paper and p	is based on class participation, weekly web forum assignments, the term resentation.	
Textbook		
Course mat	erials will be provided as handouts.	

Japanese Culture D
Spring 2017
2
Part-time lecturer Koji SHIDARA
kojishidara@gmail.com
14 :40-16 :10 Friday April 7 – July 7, 2017
Kawauchi Campus (R115, International Exchange Building)

An exploratory culture course, Japanese Culture D is offered for foreign students to learn about and share insights into various aspects of the living culture of Japan with some emphasis placed on the effects of the Great East Japan Earthquake of 2011 and the rebuilding effort thereafter. Students will learn not only through discussion and lecture but through actually participating in some of the large-scale rebuilding efforts taking place in the area.

Course Summary

The course comprises three basic approaches: discussion of certain cultural aspects of the country; reading literature including works related with the 2011 earthquake and tsunami; and field trips to places of significance from the cultural perspective. These components are designed so that they complement each other. Japanese Culture B and D courses overlap in part due to the nature of rebuilding efforts taking place in the Tohoku Region.

Learning Goals

Six years after the 2011 earthquake and tsunami, the rebuilding effort continues in the Tohoku Region. Students will gain a new perspective of the culture of this nation by witnessing and taking part in some of the dynamic interactions of the old and new elements in the reconstructing process.

Course Schedule		
April 7	1. Course introduction: Fall semester review; overview of Tohoku Region	
April 14	2. Rebuilding effort in Tohoku after 2011	
April 21	3. Coming to terms with the 2011 tsunami: Reading Warm Hands	
April 22	4. Fieldwork in the coastal district of Arahama, Sendai: Visiting former Arahama Elementary School; partaking in the forestation of the tsunami	
	embankment (Saturday)	
April 28	5. Japan's 17th-century mission to the Vatican departs from Ishinomaki	
May 12	6. Reading : Surviving the 2011 Tsunami-100 Testimonies of Ishinomaki	
	Area Survivors of the Great East Japan Earthquake	
May 13	7. Fieldwork in Ishinomaki: Visiting Dogenin Temple, nursery school, Sant	
	Juan Bautista Park and tsunami-hit communities (Saturday)	
May 19	8. The story of the Sendai Castle	
May 26	9. Hiking the Sendai Castle grounds	
May 27	10. Fieldwork in Iwanuma City: Partaking in the forestation of the	
	tsunami embankment at the Millennium Hope Hills (Saturday)	
June 2	11. Preparing for fieldwork in Tomiya and Iwadeyama	
June 10	12. Fieldwork in Tomiya and Iwadeyama: Visiting the Uchigasaki Sake	
	Brewery and former samurai school (Saturday)	
June 16	13.Senryu and haiku—Finding expressions in concise phrases	
June 23	14.Student presentation	
July 7	15. Student presentation	
Course Grading		
Evaluation is based on class participation, weekly web forum assignments, the term		
paper and p	resentation.	

Textbook

Warm Hands, Miki Onosaki, Koji Shidara (translation), Tokyo, Pantaka, 2013

Surviving the 2011 Tsunami: 100 Testimonies of Ishinomaki Area Survivors of the Great East Japan Earthquake, Editorial Office of The Ishinomaki Kahoku, Tokyo, Junposha, 2014

Course Title	Science, Technology and Industry of Japan
	(Contemporary Engineering Industries in Japan)
Semester	2017 Spring
Credit	2
Instructor	Emeritus Professor Yoshihito SHIGENO
E-mail	<u>yoshihito.</u> shigeno@gmail.com
Class Hours / Period	Friday 13:00-14:30
	April 7. 2017 – July 7. 2017
Room	Kawauchi Campus (R115, International Exchange Building)

This course aims at providing knowledge on the distinctive features of traditional and contemporary Japanese industries. By comparing these industries, you could reconsider and more deeply understand the Japanese society from the view of science.

Course Summary

Electric vehicle and fuel cell vehicle: The development of the electric vehicle and the fuel cell vehicle will be discussed in connection with the environmental issues. Other new technologies like a hybrid vehicle and a ultra capacitors are to be discussed.

Advanced steel: The super steel having the possibility of the revolutionary impact to the infrastructures will be discussed.

Super conductivity-magnet levitation train: The unique technology of the high speed train levitated by the superconductivity magnet being developed in Japan will be discussed. The effect to the future traffic system will be also discussed.

Katana (Japanese sword): Traditional Japanese technology of producing Katana will be introduced and its metallurgical aspects are to be discussed.

Robot (humanoid): Human like robots (humanoid) are being studied widely in Japan. The principle of walking and running with two legs and the affect of the humanoid to the society will be discussed.

Semiconductor: The process of the innovative invention of the "blue laser diode" will be discussed. The new –type LED (light emitted diode) created by using the nanotechnology that is developed in this university is introduced as well.

Learning Goals

Students learn the basis of science and technology through the simple problems provided for each topic. The relation to our society is also to be learned.

Course Schedule		
April 7	1. Guidance	
April 14	2. Electric vehicle and Fuel cell vehicle I	
April 21	3. Electric vehicle and Fuel cell vehicle II	
April 28	4. Electric vehicle and Fuel cell vehicle III	
May 12	5. Advanced steel I	
May 19	6. Advanced steel II	
May 26	7. Super conductivity-magnet levitation train I	
June 2	8. Super conductivity-magnet levitation train II	
June 9	9. Katana (Japanese Sword) I	
June 16	10. Robot (Humanoid) I	
June 23	11. Robot (Humanoid) II	
June 30	12. Robot (Humanoid) III	
July 7	13. Semiconductor I	
July 14	14. Semiconductor II	
July 21	15. Exam	
Course Grading		
Evaluation w	Evaluation will be based on class participation, homework assignment and the final examination.	
Textbook	Textbook	
Some lecture materials are to be provided in advance of the class. VTR will be often used for better		
understanding of the lectures.		

Course Title	Mathematics B
Semester	2017 Spring
Credit	2
Instructor	Professor Tatsuya TATE, Assoc. Professor Yuu HARIYA Assoc. Professor Takuya YAMAUCHI
E-mail	<u>tate@m.tohoku.ac.jp</u> , <u>hariya@math.tohoku.ac.jp</u> <u>tyamauchi@m.tohoku.ac.jp</u>
Class Hours / Period	Thursday. 8:50—10:20, April 13, 2017—July 27, 2017
Room	Kawauchi Campus, Room C301

The aim of this course is to discuss various topics on modern mathematics. Each lecturer gives 5 lectures of each topic. The outline of the course is as follows:

I. On Riemann hypothesis (Yamauchi)

II. Limit theorems in probability theory (Hariya)

III. Homology of simplicial complex and index of vector fields (Tate)

Course Summary

Course content

I. (1) We will study formulas for power sums in terms of Bernoulli number and their basic properties.

(2) We will define Riemann zeta function and study its basic properties.

(3) We will show how to extend Riemann zeta function as an analytic function on the complex plane.

(4) We will study Euler-Maclaurin formula to compute the values of Riemann zeta function.

(5) We will understand the statement of Riemann hypothesis regarding zeros of Riemann zeta function and study related topics.

II. In this middle course, we deal with several limit theorems in probability theory based on its measure-theoretic foundations introduced in Mathematics A.

(1) After recalling some necessary notions such as independence of random variables (r.v.'s), we formulate and prove the weak law of large numbers.

(2) We then introduce the strong law of large numbers and see how the convergence in weak sense (more precisely, in the sense of convergence in probability) can be strengthened as that in the sense of almost sure convergence.

(3) As an introduction to the theory of central limit theorems, we present their prototype, the so-called de Moivre-Laplace theorem, which can be proven by elementary computations involving Stirling's formula.

(4)(5) Finally we formulate and prove the central limit theorem in its full generality; for that purpose, the notion of characteristic functions of r.v.'s and some of their properties are introduced.

III. The aim of this series of lectures is to explain Poincaré-Brouwer and Poincaré-Hopf theorem about the vector fields on compact manifolds. This theorem is closely related to the notion of degree of maps which is defined by using homology theory. In the lectures,

(1) Poincaré-Brouwer theorem will be explained;

(2) the homology groups for simplicial complex and compact manifolds will be introduced;

(3) some method of computing homology groups will be explained;

(4) the degree of maps on spheres will be defined and a proof of Poincaré-Brouwer theorem will be given;

(5) finally, Poincaré-Hopf theorem, which is a generalization of Poincaré-Brouwer theorem will be explained.

Preparation for lectures

Students are assumed to be familiar with elementary multi-variable calculus and linear algebra. To attend the third series of lectures, some knowledge about manifolds will be very convenient.

Obligation

Students should attend each class and should submit some reports. Problems for reports will be given in the class.

Further study

Handouts and/or some references will be given in the lectures, which will help students to study more about the topics. Students who like to study further about the third topic of the course are deeply encouraged to read the following book:

V. Guillemin and A. Pollack, "Differential Topology", reprint from the 1974 original. AMS Cheksea Publishing, Providence, RI, 2010.

Learning Goals

Students will be knowledgeable about various topics in modern mathematics, particularly in number theory, geometry and probability theory.

Course Sc	Course Schedule	
April 13	Yamauchi	1. Bernoulli numbers and power sums
April 20	Yamauchi	2. Riemann zeta function
April 27	Yamauchi	3. The analytic continuation of Riemann zeta function
May 11	Yamauchi	4. Euler-Maclaurin formula
May 18	Yamauchi	5. Riemann hypothesis
May 25	Hariya	6. The weak law of large numbers
June 1	Hariya	7. The strong law of large numbers
June 8	Hariya	8. The de Moivre-Laplace theorem
June 15	Hariya	9. Characteristic functions
June 22	Hariya	10. The central limit theorem
June 29	Tate	11. Vector fields on spheres and their properties: Poincaré-Brouwer theorem
July 6	Tate	12. Rapid course in homology theory: simplicial complex
July 13	Tate	13. Rapid course in homology theory: homology and its computation
July 20	Tate	14. Degree of maps and proof of Poincaré-Brouwer theorem
July 27	Tate	15. Poincaré-Hopf theorem and related topics
Course Grading		
The course grades will be based on attendance and reports.		
Textbook		
Textbooks are not assigned in advance. A reference is given above.		

Course Title	Inorganic Chemistry (Basic Organometallic Chemistry)
Semester	2017 Spring
Credit	2
Instructor	Associate Professor Hisako Hashimoto
E-mail	hhashimoto@m.tohoku.ac.jp
Class Hours / Period	Monday, 14:40~16:10 April 10 ~July 31
Room	Room 105 at International Exchange Building , Kawauchi-kita Campus
Course Objectives	

This course is opened in Spring semester for understanding the fundamental organometallic chemistry.

The course objective is educating students to learn basic knowledges of organometallic chemistry, which is a boundary area between inorganic chemistry and organic chemistry. The contents of this course include coordination number, stereochemistry and electron counting rule for transition metal complexes, oxidation state of the metal centers, synthesis, structure, and reactivity of some typical organometallic complexes.

Course Summary

1. Basic knowledges for metal complexes (electron counting rule, oxidation state, crystal field theory, bonding nature (orbital interaction), etc.

- 2. Metal carbonyl complexes
- 3. Metal alkyl complexes
- 4. Dinitrogen complexes

Learning Goals

Students will learn about how to count the coordination number, electron count, oxidation state, and bonding nature of the metal complexes, and through such information, they will be able to understand or predict the structures, properties, and reactions of organometallic compounds.

Course Schedule		
4/10	1.Orientation, a level check test	
4/17	2. Periodic table, structures of complexes	
4/24	3. d-orbitals, crystal field theory	
5/8	4.The 18-electron rule and formal oxidation state	
5/15	5. Exercises for electron counting rule and oxidation state	
5/22	6. Metal carbonyl complexes: synthesis, bonding	
5/29	7. Metal carbonyl complexes: reactions	
6/5	8. Metal carbonyl hydride complexes: oxidative addition and reductive elimination	
6/12	9. Exercises for metal carbonyl complexes	
6/19	10. Metal carbonyl clusters: Wades rules and isolobal relationships	
6/26	11.Carbonyl related complexes	
7/3	12.Dinitrogen complexes: Synthesis and application	
7/10	13.Metal alkyl complexes, Bonding nature, synthesis	
7/14	14.Metal-Carbon multiple bonded complexes	
7/31	15. Exam	
Course Grading		
Evaluat	tion will be based on class participation, homework assignment, and short	
tests (or excercise) during the class.		
Textbook:		
Bochmann, Manfred, "Organometallics 1 Complexes with Transition Metal-Carbon		

 $\sigma\text{-}Bonds."$ Oxford science publications: 2008. ISBN 0-19-855750-7

Geophysics

Associate ProfessorNaoki TERADA (teradan@pat.gp.tohoku.ac.jp)ProfessorShinji TODA (toda@irides.tohoku.ac.jp)Associate ProfessorWeiming SHA (sha@wind.gp.tohoku.ac.jp)

PLACE: International Exchange Building, Room R105, Kawauchi-kita Campus TIME: Friday 8:50-10:20

This course aims at learning the outlines of geophysics. By joining this course, students will get basic knowledge in geophysics.

The following topics, which are actively investigated at the Department of Geophysics, will be introduced. (1) Space Physics: Selected topics from solar physics, interplanetary physics, magnetospheric physics, and upper atmospheric physics for the purpose of learning basic knowledge on the electromagnetic environment of the Sun, the Earth, and planets. (2) Solid Earth Physics: Selected topics from seismology, volcanology, and plate tectonics for the purpose of learning basic knowledge on the structure and dynamics of the solid Earth. (3) Fluid Earth (atmosphere and ocean) Physics: Selected topics from meteorology, global warming, and physical climatology for the purpose of learning basic knowledge on climate change and related global environment problems.

The evaluation will be mainly based on a record of attendance, and contribution to discussions.

• Each Friday from April 7 through May 12.

Lectures on Space Physics will be given by Associate Prof. Terada. Material for the lecture will be prepared by Associate Prof. Terada.

- •Each Friday from May 19 through June 16. Lectures on Solid Earth Physics will be given by Prof. Toda. Material for the lecture will be prepared by Prof. Toda.
- •Each Friday from June 23 through July 21. Lecture on Fluid Earth will be given by Associate Prof. Sha. Material for the lecture will be prepared by Associate Prof. Sha.

Molecular and Cellular Biology (Spring2017)

Contact address; kogane@m.tohoku.ac.jp (Assoc. Prof. Koganezawa) sci-sien@grp.tohoku.ac.jp (Student Support Section, School of Science)

Place; Room 105 at International Exchange Building, Kawauchi-kita Campus Time; 10:30 – 12:00 every Friday

This course offers an introduction to biochemistry, genetics, cell biology, early development, and neurobiology; emphasis on the cell as the basic unit of life; its composition, functions, replication, and differentiation. For evaluation, students are required to attend the class, and must submit an essay dealing with a topic covered in one of the lectures.

01. APRIL 14(FRI) ASAKO SUGIMOTO Dynamic cellular behaviors in embryogenesis

02. APRIL 21(FRI) GAKU KUMANO Germline cell development in animal embryos

03. MAY 12 (FRI) RYUSUKE YOKOYAMA Molecular biology of plant

04. MAY 19 (FRI) KOJI TAMURA Pattern formation in vertebrates

05. MAY 26 (FRI) KENTARO ABE Development of the nervous systems

06. JUNE 2 (FRI) KEN-ICHRO TSUTSUI Investigation of the brain function by neurophysiological methods

07. JUNE 9 (FRI) HIROMU TANIMOTO Reward, punishment, and neural circuits

08. JUNE 16 (FRI) JUNKO KYOZUKA Pattern Formation in Plants

09. JUNE 23 (FRI) MITSUNORI FUKUDA Membrane dynamics in cells

10. JUNE 30 (FRI) ERINA KURANAGA Collective cell movement in epithelial morphogenesis

11. JULY 7 (FRI) MASAYUKI KOGANEZAWA Neural mechanisms of courtship behavior

Course Title	Evolution of the Western Pacific Island Arcs and Their Environments
Semester	2017 Spring
Credit	2
Instructor	Assoc. Prof. Jun Muto (correspondence) Profs. Toshifumi Imaizumi, Kunio Kaiho, Yasufumi Iryu, Hiroyuki Nagahama, Hiroshi Nishi and others
E-mail	jun.muto.a3@tohoku.ac.jp
Class Hours / Period	Tuesday, 10:30 ~ 12:00
Room	Room 105 at International Exchange Building , Kawauchi-kita Campus

In this lecture course, students will learn some basic concepts and knowledge of 1) plate tectonics and 2) the tectonic history of the world including Japan Islands, 3) active faults and earthquakes, 4) ocean environments and their history. Also, this class deals with 5) the effect of the Western Pacific island arcs and Japan Sea to the Asian monsoon circulation.

Course Summary

This course aims at presenting some basic concepts and information of plate tectonics and the tectonic history of the Asiatic continent and the Japanese islands, active faults and earthquakes, ocean environments and their history, and climate. The lectures include the problems how natural hazard and earth's environmental changes affect the living world and human life.

Learning Goals

The students can understand multidisciplinary aspects of the Western Pacific/Northeast Asian regions through the case studies referred frequently in these lectures (points 1 to 5 mentioned above).

Course Sc	hedule	
April 11	Muto, J.: Introduction of the class	
April 18	Osozawa, S: Geology and morphology of Kawauchi and Hirose river area (outside small field trip)	
April 25	Muto, J.: Rheology of rocks and subduction zone earthquake cycles	
May 9	Toda, S.: Earthquake triggering	
May 16	Imaizumi, T.: Earthquakes and active faults	
May 23	Nagahama, H.: Faulting and electro-magnetic phenomena	
May 30	Hirano, S.: Active faults in Japan	
June 6	Goto, K. : Lessons learned from the 2011 Tohoku-oki tsunami	
June 13	Takashima, R.: Greenhouse paleoenvironments	
June 20	Kaiho, K.: Triggers and process of macroevolution and mass extinctions	
June 27	Sasaki, O.: Looking back of life	
July 4	Nishi, H.: Climate change during the past 200 Myr	
July 11	Isoda, Y.: The Great East Japan Earthquake	
July 18	Iryu, Y.: Geology and biogeography of the Ryukyu Islands	
Course Grading		
The evaluation will be based on the attendance and submitted report. Submit a report on		
a selected	a selected subject from the lectures until July 28. Detail on grading will be announced	
in the first lecture on April 11.		
Textbook		

Subject	Introduction to Resource and Environmental Economics	Day/Period	Thur./2 nd Apr. 13 – Aug. 3, 2017	Object	AMB/JYPE
Instructor (Post)	S. KITANI, <i>et al.</i> (Prof.)	Categories	Specialized Subjects	Preferable Participants	3rd&4th-year & JYPE students
Position	Faculty of Agriculture (Graduate School	of Agricultur	al Science)	Credits	2
FOSILIOII	Position Faculty of Agriculture (Graduate School of Agricultural Science)		ai Science)	Semester	7&9
Subject Numbering	ABS-APS359E			Language	English
1. Class sul	bject : Resource and Environmental E	conomics			
2. Object a Ten Prof	nd summary of class This class object is to essors, Associate Professors and Assistant	study the con Professors w	ncepts of Resource ill give the lecture	ce and Enviro es weekly.	nmental Economics.
3. Keyword 4. Goal of s Environ Remote	ds agricultural economics, remote sensin study The goal of this class is to obtain the mental Economics as well as the basic prin Sensing and Life Cycle Assessment of Goo	g, food busing background ciples of Agr ods.	ess, environment: knowledge conce icultural Econom	al conservatio erning Resour- ics, Farm Ma	n, agricultural ethics ce and nagement Science,
5. Contents	and progress schedule of class				
-Guidance	(Head of department)				
- Readings	an annual report of food, agriculture a	nd rural villa	age in Japan (He	ad of depart	ment)
An annua	I report of Japanese MAFF shows the outline	ine of food, a	griculture and rur	al village in J	apan.
-Rural De	reprovides an overview on rural development	(Assistant Pr	olessor Nina 1A	KASHINO)	
-A oricultu	ral policy and environmental issues (As	sociate Profe	ssor Keiichi ISH	II)	
This lectu	re will examine trends of agricultural polici	cv integrating	environmental p	roblems.	
-Recent Si	tuation of Japanese Agriculture and Glo	bal Food Pr	oduction (Profes	sor Kivohide	e MORITA)
World foo	d supply and demand has changed dramat	ically in 21th	Century. We exp	lain its causes	like emerging
economie	s' economic growth and expanding use of	agricultural p	roducts for biofu	els, and its im	plication. And also
we study a	agricultural structural problems of Japan li	ke too small f	farming.		_
-Trends of	Japanese food consumption and consur	ner's behavi	or (Professor Fu	sao ITO)	
In this cla	ss, recent characteristics of change in Japa	nese food con	nsumption will be	e showed. Stu	dents will be able to
learn som	e problems of Japanese future food market	t.			
-Environm	iental friendly oriented agriculture in Ja	apan (Assista	int Professor Asa	ato MIZUKI)
This lectu	re will cover an outline of environmental i	triendly agric	ulture in Japan ar	id provide stu	dents concepts of
A gribusir	evaluation and environmental assessment		 ZI)		
Farmer's	income comprises not only agricultural inc	nnto FOTOr come Japan's	overnment shou	ild support pr	omoting agriculture
production	n-related businesses such as the processin	g of farm pro	ducts by farmers	themselves I	n this lecture
statistical	data and other information of such busines	sses will be in	troduced	themserves. I	il tills lecture,
-Spatial sc	ience in agriculture (Associate Professo	r Chinatsu Y	ONEZAWA)		
Introducti	on of remote sensing and geographical inf	ormation scie	nce (GIS) for agr	ricultural appl	ication. Spatial
thinking is an important and powerful agricultural problem solving tool.					
-Environmental impact assessment/environmental policy (Assistant Professor Michiaki OMURA)					
Life cycle assessment for agricultural activities					
-Agricultu	ral ethics and environmental problems ((Assistant Pr	ofessor Shin OY	YAMADA)	
What show	uld the relationship between agriculture an	d environmer	nt be? In this lecture	ure students s	tudy the values of
environme	ent in the perspective of agricultural ethics				
-What is e	nvironmental risks? (Professor Shinobu	1 KITANI)		11 6	
The lectur	The lecture shows you the difference between usual risks and environmental ones, and hope for students'			students	
conscious	ness of importance of environmental ethic	S.			
-Compatil	ollity between conservation of nature an	d tourism (A	ssociate Profess	or Tomoko I	MOTO)
We explor	a possible ways to reduce the impact of to	urism on nati	re using land use	a classificatio	n and economic
evaluation	we explore possible ways to reduce the impact of tourism on nature using land-use classification and economic evaluation of nature				
-Creation	of the report (Head of department)				
6. Prenarat	ion : nothing special				
7. Record e	end evaluation method : Attendance to the	lectures 50%	reports 50%		
8. Textbool	k and references : Textbook and references	will be intro	duced by each pro	ofessor.	
9. Self stud	y : nothing special		j p-		
10. In additi	on				

Subject	Applied Biological Chemistry	Day/Period	Fri./2 nd Apr. 7 – Aug.4, 2017	Object	AMB/JYPE
Instructor (Post)	T. UCHIDA, et al (Prof.)	Categories	Specialized Subjects	Preferable Participants	3rd&4th-year & JYPE students
Desition	Eagulty of Agriculture (Graduate School	of A grigultur	al Science)	Credits	2
Position	Faculty of Agriculture (Graduate School of Agricultural Science)			Semester	7&9
Subject Numbering	ABC-AGC261E Language English		English		
1. Class subject: Life science for agricultural and industrial applications					
2. Object and summary of class : This class object is to study fundamentals and recent progress in the research-field of molecular biology, cell biology, and physiology in plants, animals, and microbes, and chemistry of biologically					

active natural products. More than ten Professors and Associate Professors will give the lectures weekly to introduce their specific research fields.

3. Keywords: Biochemistry, Molecular Biology, Chemistry

4. Goal of study

The goal of this class is to obtain the background knowledge concerning life science for agricultural and industrial applications as well as the basic principles of biochemistry and biotechnology.

5. Contents and progress schedule of class

1. Photosynthesis and mineral nutrients of higher plants

Students will learn about the photosynthetic oxygen evolution and mineral nutrition in higher plants.

2. **Molecular Genetics and Brain Science** Methodological advance in molecular biology and molecular genetics fields has contributed to recent brain science with a huge impact. I will try to demonstrate this fascinated field to the attendee of the class.

3. Enzymology

Topics in enzymes with emphasis on association with health, environment and food will be discussed.

4. Applied microbiology and fermentation technology

Microorganisms possess a wide variety of metabolism and thus are applied to bio-conversion in fermentation industry. This lecture will address both transport processes (substrate-uptake and product-efflux) catalyzed by solute transporters at cell membranes and intracellular metabolic pathways from the view points of bioenergetics in microorganisms. We will also lecture on the principles of protein production technology by bacteria.

5. Synthesis and application of bioactive natural products

This lecture will be presented to build basic understanding of synthetic organic chemistry in the filed of natural products chemistry and its roles in agricultural production, medicinal chemistry, and so on.

6. Molecular basis of nitrogen metabolism in rice

In this lecture, molecular mechanisms underlying the primary ammonium assimilation and the related processes in rice will be introduced.

7. Molecular eukaryotic microbiology

Eukaryotic microorganisms such as yeasts and filamentous fungi have been playing a pivotal role in academic science as well as in industrial production of valuable substances. This lecture will give an overview of molecular analysis of the important characteristics of yeast and koji-mold, which each has been used in sake fermentation for over a thousand years in Japan.

6. Preparation: Textbooks and references will be introduced by each professor.

7. Record end evaluation method : Attendance to the lectures 50%, reports 50%

8. Textbook and references: Textbooks and references will be introduced by each professor.

9. Self study: Textbooks and references will be introduced by each professor.

10. In addition

- 1. Professor Amane MAKINO, Associate Professor Hiroyuki ISHIDA
- 2. Professor Katsuhiko NISHINORI, Associate Professor Masahiko HARATA
- 3. Professor Takafumi UCHIDA, Associate Professor Eugene FUTAI
- 4. Professor Keietsu ABE, Associate Professor Jun KANEKO
- 5. Professor Shigefumi KUWAHARA, Associate Professor Masaru ENOMOTO
- 6. Professor Mitsue MIYAO, Associate Professor Toshihiko HAYAKAWA
- 7. Professor Katsuya GOMI, Associate Professor Takahiro SHINTANI

Course Title	Materials Science and Engineering B
Semester	2017 Spring
Credit	2
Instructor	Prof. Katsunari OIKAWA, Prof. Hongmin ZHU
Instructor	Assoc. Prof. Takahiro MIKI
E mail	k-oikawa@material.tohoku.ac.jp
E-man	hzhu@material.tohoku.ac.jp, miki@material.tohoku.ac.jp
Class Hours / Period	13:00-14:30 Tuesday / April 11,2017 - July 18,2017
Room	Lecture Hall, Materials Science and Engineering
Course Objectives	

"Materials Science and Engineering B" is a half year class to learn the fundamentals of the "Materials Processing" based on the high temperature physical chemistry and process engineering. This class basically consists of three parts as thermodynamics for materials processing, ferrous and process metallurgy (iron- and steel-making), nonferrous metallurgy (pyro- and hydro-metallurgy), and electro-metallurgy in active metal processing. Students can study fundamentals and latest topics in the area of materials processing and engineering. The grade of students will be evaluated with the score of home works, class participation, exercises during the class and the final examination.

Course Schedule	
April 11	1. Guidance
April 18	2. Introduction to chemical thermodynamics for materials processing I
April 25	3. Introduction to chemical thermodynamics for materials processing II
May 2	4. Reduction/Oxidation equilibrium for materials
May 9	5. Stability diagrams and phase diagrams of materials
May 16	6. Basic principle of iron and steel making.
May 23	7. Fundamentals of pyrometallurgy I
May 30	8. Fundamentals of pyrometallurgy II
June 6	9. Application of pyrometallugry (Copper making)
June 13	10. Application of pyrometallugry (Zinc, Lead production)
June 20	11. Fundamental electrochemistry in metallurgy
June 27	12. Application of hydrometallurgy
July 4	13. Aluminum and active metal production I
July 11	14. Aluminum and active metal production II
July 18	15. Final examination

Course Title	Computer Software Engineering	
Semester	2017 Spring	
Credit	2	
Instructor	Assoc. Professor Hideaki Goto	
E-mail	hgot@cc.tohoku.ac.jp	
Class Hours / Period	Tuesday, 8:50-10:20 April 11, 2017 – July 18, 2017	
Room	Kikai Lecture Room 1, Division of Mechanical Engineering, Aoba-yama Campus	
Course Objectives		
This course will give students the basic knowledge about Algorithms and Data		

This course will give students the basic knowledge about Algorithms and Data Structures.

Course Summary

Evaluation methods and programming techniques for making good programs will be discussed in the lecture style. Three or four assignments and the final exam will be given. The grade will come from in-class final exam (30%) and two or three assignments (70%). The final exam might be changed to an additional assignment.

Learning Goals

Students will have the ability of designing and making good programs.

(Programming in a particular language is not included.)

Course Sc	hedule	
April 11	1.Introduction of the course, Computation and Algorithms	
April 18	2.Evaluation of computational complexity	
April 25	3.Data structures, Abstract Data Types (ADTs)	
May 2	4. Basic data structures : array, list	
May 9	5. Basic data structures : stack, queue	
May 16	6. Basic data structures : graph, tree	
May 23	7. Basic data structures : set, table (dictionary), hashing	
May 30	8. Priority queue, heap	
June 6	9. Binary search tree and Balanced search tree	
June 13	10. Sorting : bubble sort, shell sort, bucket sort, radix sort, insertion sort	
June 20	11. Sorting : heap sort, quick sort, merge sort	
June 27	12. Graph searching : breadth-first search, depth-first search	
July 4	13. Graph algorithms : minimum spanning tree, shortest path problem	
July 11	14. Optimization problems	
July 18	15.* Final Examination	
Note	·	
1) Studer	nts have to do all the assignments and take the final exam.	
2) Although high programming skill of a particular language is not required, students		
need to have some knowledge about a programming language, preferably C or Java.		
3) The co	ontents of this program are subject to change.	
Textbook		
Handouts	will be given.	
Thomas A	A. Standish, "Data Structures in Java," Addison-Wesley (1997) as a reference	
text.		

Course Title	Fundamentals of Computer Engineering
Semester	2017 Spring
Credit	2
Instructor	Hiroaki Kobayashi, Professor, Graduate Scool of Information Sciences
E-mail	koba@tohoku.ac.jp
Class Hours / Period	Monday, 13:00-14:30 April 10,2017 – July 24,2017
Room	Room 213 of Mechanical Engineering Building No.2, Kikai-Chinou, School of Engineering, Aobayama Campus
Course Objectives	

In this course, students should be able to:

(1) know the concept of today's computers based on the history of computers development,

(2) learn data representation for computers and the mathematical foundation of computer arithmetic, and

(3) understand the concrete structure and functionality of modern computer systems through their basic components of arithmetic unit, memory and control unit as building blocks in terms of hardware and software.

Course Summary

After the quick revew of computer systems development in the history, the course gives the mathematical foundation for computer system design. Based on the mathematical fundaton, the design methodology of basic circuits such as combinational circuits and sequential circuits is given. And then, the course describes how a computer system is constructed by using several basic combinational and sequential circuits, and discusses its functionality to carry out arithmetic and logic operations. In addition, the format of a machine language to direct operations to the computer system and its interpretation to generates control signals will be presented.

Learning Goals

As the lerning goal, students have aquired the knowledge of circuit design and organization of modern computer systems.

Course Sc	hedule
April 10	1) Course Introduction, and History and Fundamentals of Computers
April 17	2) Number Representation: Binary Digit (Part I)
April 24	3) Number Representation: Binary Digit (Part II)
May 1	4) Boolean Algebra (Part I)
May 8	5) Boolean Algebra (Part II)
May 15	6) Combinational Logic and it Applications (Part I)
May 22	7) Combinational Logic and it Applications (Part II)
May 29	8) Sequential Logic: Basics (Part I)
June 5	9) Sequential Logic: Basics (Part II)
June 12	10) Sequential Logic: Applications (Part I)
June 19	11) Site Visit to Supercomputer Center of Tohoku University
June 26	12) Sequential Logic: Applications (Part II)
July 3	13) Organization of Computer Systems
July 10	14) Control Mechanism of Computer Systems
July 24	15) Final Examination
Textbook	
David A Hardware,	Patterson and John L. Hennessy, Computer Organization & Design: The /Software Interface, Morgan Kaufmann, November, 2011.

Course Title	Electricity and Magnetism B
Semester	2017 Spring
Credit	2
Instructor	Associate Professor Mark Sadgrove
E-mail	mark@riec.tohoku.ac.jp
Class Hours / Period	Friday, 8:50-10:20, starting from April 7 th , 2017
Room	Room 2-413 (Building D12, 4F, Seminor Room 413) Department of Electrical, Information and Physics Engineering, Aobayama Campus

The objectives of this course include:

1) Understanding of and ability to apply Maxwell's equations to the creation and propagation of electro-magnetic waves.

2) Understanding of and ability to solve problems regarding electro-magnetic fields in matter.

3) Understanding of electromagnetic induction.

Course Summary

This course E&M B is the second half of a one year-long course on the foundations of the theory of electricity and magnetism: "Electricity and Magnetism A" (E&M A) and "Electricity and Magnetism B" (E&M B). First, a review of E&M A will be given. Maxwell's equations will be derived to introduce the propagation of electromagnetic plane waves and the radiation of electromagnetic waves. Electric and magnetic fields in matter, along with electromagnetic induction will also be studied.

Learning Goals

By the end of the course, students should understand Maxwell's equations especially in relation to the propagation of electromagnetic plane waves and the radiation of electromagnetic waves. Electric and magnetic fields in matter, and electromagnetic induction should also be understood. Students should also have the ability to solve simple problems in the above topics.

Course Sc	hedule
April 7	1. Review of Electricity and Magnetism A, I
April 14	2. Review of Electricity and Magnetism A, II
April 21	3. Maxwell's equations and electromagnetic plane wave in vacuum
April 28	4. Electromagnetic plane waves in vacuum and matter
May 12	5. Reflection and transmission of plane wave at planar boundary between two media
May 19	6. Radiation of electromagnetic waves
May 26	No class (Field day of Faculty of Engineering)
June 2	7. Radiation of electromagnetic wave by an electric dipole
June 9	8. Electromagnetic induction (Faraday's law)
June 16	9. Dielectric materials and electric dipole moment
June 23	10. Polarization, dielectric constant and capacitors
June 30	11. Boundary conditions at two different dielectric media
July 7	12. Boundary conditions at two different magnetic media
July. 14	13. Nonlinear media; ferromagnetism and magnetic circuit
July. 21	14. Magnetic dipole and magnetization current
July 28	Final Exam
Textbook	

There is no set text. Many textbooks cover the topics in the including: E. M. Purcell, Electricity and Magnetism (Berkeley, Volume 2), D. J. Griffiths, Introduction to Electrodynamics (2nd ed.), R. P. Feynman, The Feynman Lectures on Physics (Volume 2), J. D. Jackson, Classical Electrodynamics (2nd ed.), J. A. Edminister, Electromagnetics (2nd ed.)

Course Title	Chemical and Biomolecular Engineering I		
Semester	2017 Spring		
Credit	2		
Instructor	Prof. Yuji MATSUMOTOProf. Nobuhiko IKIProf. Daisuke NAGAOAssoc. Prof. Masaki KUBOAssoc.Prof. Yoshiyuki SATOAssoc.Prof. Yoshinao NAKAGAWAAssoc. Prof. Fabio PICHIERRI		
E-mail	y-matsumoto@tohoku.ac.jp		
Class Hours / Period	10:30-12:00, Thursday April 13,2017 - July 20,2017		
Room	Room "Kasho", Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Aobayama Campus		

We are surrounded by a large number of chemical products manufactured with various types of materials including organic, inorganic and their composite materials. Even in our body, biological materials are constantly being produced using a variety of chemical and biochemical reactions. The present course objectve is to provide chemistry-oriented topics in developing such functional materials in various areas.

Course Summary

This course is opened in Spring semester for understanding chemical and biomolecular engineering. Various topics will be presented by different instructors, as listed in the course schedule below, each instructor giving a series of two lectures for each topic.

Learning Goals

Students will learn some basic aspects of chemical production, with special emphasis on how environment-friendly synthetic methodologies of materials have been developed for new advanced products.

Course Schedule		
	1. Chemistry of materials processing in vacuum by Prof. Yuji	
April 13	MATSUMOTO	
	1-1. Basic vacuum technology for materials processing	
Amril 20	1-2. Vacuum deposition techniques of inorganic and organic thin film	
April 20	materials	
A 11.07	2. Chemical functions of coordination compounds by Prof. Nobuhiko IKI	
April 27	2-1. Basic concepts of coordination chemistry	
May 11	2-2. Applications to functional materials and biomedicine	
May 18	3. Chemistry of composite materials in wet processing by Prof. Daisuke	
	NAGAO	
	3-1. Wet chemical processing for composite particles and thin films	
May 25	3-2. Controls over sizes and morphologies of composite particles	
June 1	4. Particle dynamics in nanofluids by Assoc. Prof. Masaki KUBO	
	4-1. Aggregation / dispersion of particles	
June 8	4-2. Aggregation kinetics and colloidal dynamics	
June 15	5. Thermophysical Properties of Polymers and Polymer Solutions by Assoc.	
	Prof. Yoshiyuki SATO	
	5-1. Volumetric Properties of Polymers	
June 22	5-2. Phase Equilibria of Polymer Solutions	
June 29	6. Catalytic production of chemicals from biomass by Assoc. Prof. Yoshinao	
	NAKAGAWA	
	6-1. Production of pure platform chemicals from biomass	
July 6	6-2. Conversions of biomass-derived platform chemicals	
July 13	7. Chemistry of Carbon Nanomaterials by Assoc. Prof. Fabio PICHIERRI	
	7-1. Structure and bonding in organic molecules	
July 20	7-2. Fullerenes, carbon nanotubes and graphene	
Course Requirements		
Knowledge on fundamental chemistry is required		
Student Evaluation		
Examinations and/or reports, depending on topics. No make-up exam.		
Textbook		
None.The	handout and/or prints will be delivered by each instructor in his/her class	

Course Title	Chemical and Biomolecular Engineering II		
Semester	2017 Spring		
Credit	2		
Instructor	Prof. Hitoshi SHIKU Prof. Tomokazu MATSUE, Associate Prof. Seiji TAKAHASHI Associate Prof. Masato NOGUCHI Associate Prof. Masaru WATANABE Associate Prof. Yasuhiro FUKUSHIMA Associate Prof. Naoya MOROHASHI		
E-mail	shiku@bioinfo.che.tohoku.ac.jp		
Class Hours / Period	Hours / Period 13:00-14:30, Wednesday April 12,2017 – Aug 2,2017		
Room	Room "Kasho", Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Aobayama Campus		
Course Objectives			

Biomolecular engineering refers to any technological applications of chemical and biological systems, such as biomolecules and environmental materials to make or modify products or green processes for specific purposes. This class focuses on biomaterials, biomedical engineering, metabolic engineering, glycochemistry, environmentally benign materials and reactions, green process and life cycle assessment. Students will learn some basic aspects of engineering for biotechnology, biological and environmental materials.

Course Summary

Students will learn about basics and recent topics concerning biomaterials, sensors, metabolic engineering, glycosylation reaction, transformation of biomass, sustainability aspects of process technologies, and environmentally benign materials and reactions.

Learning Goals

Ability to learn skills summarizing the essence of the biological and environmental systems from the chemical and engineering sight of view.

Course Schedule					
April 12	 Biomaterials and cell culture (by Prof. Hitoshi Shiku) 1-1. Cell culture and embryology 				
April 19	1-2. Tissue engineering and biomaterials				
April 26	 Biomedical engineering and Biosensors (by Prof. Tomokazu MATSUE) 2-1. Basics of Bioelectrochemistry 				
May 10	2-2. Biosensor technology				
May 17	 Plant specialized metabolites (by Associate Prof. Seiji TAKAHASHI) 3-1. Basic sciences and histories of use 				
May 24	3-2. Metabolic engineering for production of valuable metabolites				
May 31	4. Carbohydrate chemistry (by Associate Prof. Masato NOGUCHI)4-1. Principles of carbohydrate chemistry				
June 7	4-2. Chemical glycosylation reaction				
June 14	 5. Transformation of biomass molecules in green solvents (Associate Prof. Masaru WATANABE) 5-1. Hydrothermal water process 				
June 21	5-2. Ionic liquid-based green solvents				
June 28	 6. Chemical Systems Engineering (by Prof. Yasuhiro FUKUSHIMA) 6-1. Basics in evaluating sustainability aspects of process technologies 				
July 5	6-2. A case study on integrated biological, agricultural and chemical process systems design				
July 12	 7. Development of environmentally benign materials and reactions (by Associate Prof. Naoya MOROHASHI) 7-1. Host-guest chemistry and separation materials using host molecules 				
Aug 2	7-2. Development of carboxylation reactions with carbon dioxide				
Course Grading					
Students will be evaluated based on: class attendance, examinations and/or reports					
depending on topics. No make-up exam.					
Students require knowledge of organic chemistry and biochemistry.					
Textbook					
No text book					

Course Title	Geological Environment and Earthquake Disaster			
Semester	2017 Spring			
Credit	2			
Instructor	Professor Masato Motosaka, Assoc. Prof. Susumu Ohno			
E-mail	motosaka@archi.tohoku.ac.jp			
Class Hours / Period	8:50-10:20 on Thursday April 13,2017 – July 6,2017			
Room Civil Engineering and Architecture, Lecture Room				
Course Objectives				

It is clear through past disastrous earthquakes that the earthquake damage is quite different depending on the geological conditions. The earthquake observation explains this truth. Therefore, it is important to take into account the difference of ground motion due to soil conditions in a seismic design of urban structures and in urban disaster prevention planning. This course comprises the lectures, students' presentations and discussions on engineering topics for earthquake disaster prevention considering geological environment. In each lecture, the relevant material will be handed out. In this course, two reports are requested and students make presentation based on the materials of the task during classes. The evaluation will be based on the reports and presentations for the requested subjects.

Course Schedule				
April 13	1.Introduction to Earthquake and Building Structures			
April 20	2.Recent Earthquake Damage and Lessons (I)			
April 27	3.Recent Earthquake Damage and Lessons (II)			
May 11	4.Students' presentation on the 1st Report and Discussion			
May 18	5.Measurement of Ground Motion and Structural Vibration			
May 25	6. Overview of Geological Structure and Ground Motion Characteristics			
June 1	7.Introduction to Wave Propagation Theory and Structural Vibration			
June 8	8.Structural Health Monitoring			
June 15	9.Earthquake Damage Prediction -Natural and Social Information-			
June 22	10.Seismic Protection Technology -Earthquake Early Warning System-			
June 29	11.Recent Topics on Earthquake Disaster Prevention Projects			
July 6	12.Students' presentation on the 2nd Report and Discussion			

JYPE 2017 Spring Timetable

	I 8:50~10:20	II 10:30~12:00	Ш 13:00~14:30	IV 14:40~16:10
Mon	Japanese 1 Japanese 2		Fundamentals of Computer Engineering	Inorganic Chemistry
	Japanese 3		Individual Research Training B	
	Japanese 4			
Tue	Computer Software Engineering	Evolution of the Western Pacific Island Arcs & Their Environments	Matetirals Science & Engineering B	
			Individual Research Training B	
	Japanese 1		Chemical & Biomolecular	Japanese Culture B
Wed	Japanese 2		Engineering II	
weu	Japanese 3		Individual Research Training B	
	Japanese 4			
Thu	Mathematics B	Chemical & Biomolecular Engineering I	Individual Research Training B	
	Geological Environment & Earthquake Disaster	Introduction to Resource & Environmental Economics		
Fri	Geophysics	Molecular & Cellular Biology	Science, Technology & Industry of Japan	Japanese Culture D
	Electricity & Magnetism B	Applied Biological Chemistry	Individual Research Training B	